

Chromatin modifier enzymes, the histone code and cancer

Helena Santos-Rosa ^a, Carlos Caldas ^{b,*}

^a The Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, UK

^b Cancer Genomics Program, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK

Available online 13 October 2005

Abstract

In all organisms, cell proliferation is orchestrated by coordinated patterns of gene expression. Transcription results from the activity of the RNA polymerase machinery and depends on the ability of transcription activators and repressors to access chromatin at specific promoters. During the last decades, increasing evidence supports aberrant transcription regulation as contributing to the development of human cancers. In fact, transcription regulatory proteins are often identified in oncogenic chromosomal rearrangements and are overexpressed in a variety of malignancies. Most transcription regulators are large proteins, containing multiple structural and functional domains some with enzymatic activity. These activities modify the structure of the chromatin, occluding certain DNA regions and exposing others for interaction with the transcription machinery. Thus, chromatin modifiers represent an additional level of transcription regulation. In this review we focus on several families of transcription activators and repressors that catalyse histone post-translational modifications (acetylation, methylation, phosphorylation, ubiquitination and SUMOylation); and how these enzymatic activities might alter the correct cell proliferation program, leading to cancer.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Histone code; Cancer; Histone acetylases; Histone deacetylases; Histone methylases; Chromatin

1. Introduction

In all eukaryotes, DNA is compacted into the nucleus as chromatin. The traditional view is that chromatin is required for packing the ~1 m length of the human genome DNA into the 10 μ m diameter average size human nucleus. However, our view on the function of chromatin has become broader and more dynamic than just that of a DNA-packaging device. Chromatin represents an additional level of regulation for all DNA metabolic processes (replication, repair and gene expression) by working as a platform where biological signals integrate and molecular responses take place.

The structural subunit of chromatin is the nucleosome, which consists of 146 bp of DNA wrapped around an octamer of very basic proteins called histones. Each nucleosome core consists of two copies of each of the his-

tones: H2A, H2B, H3 and H4 (Fig. 1). These evolutionarily conserved proteins have a globular C-terminal domain critical to nucleosome formation and a flexible N-terminal tail that protrudes from the nucleosome core. Nucleosomes assemble on an 11 nm filament array known as beads on a string, which undergoes a series of wrapping and compacting events as cells progress from interphase to metaphase, culminating with the totally condensed chromosome during metaphase.

Besides this generic organisation, local chromosomal domains present different levels of structure: heterochromatin was originally identified cytogenetically as the portion of the genome that remains condensed after the transition from metaphase to interphase. These regions correspond to telomeres and pericentric chromosomal areas and generally localise attached to the perinuclear compartment. Heterochromatic areas tend to be rich in repetitive sequences, low in gene content (although some genes are present), transcriptionally silent or showing a variegating phenotype and typically

* Corresponding author.

E-mail address: cc234@cam.ac.uk (C. Caldas).

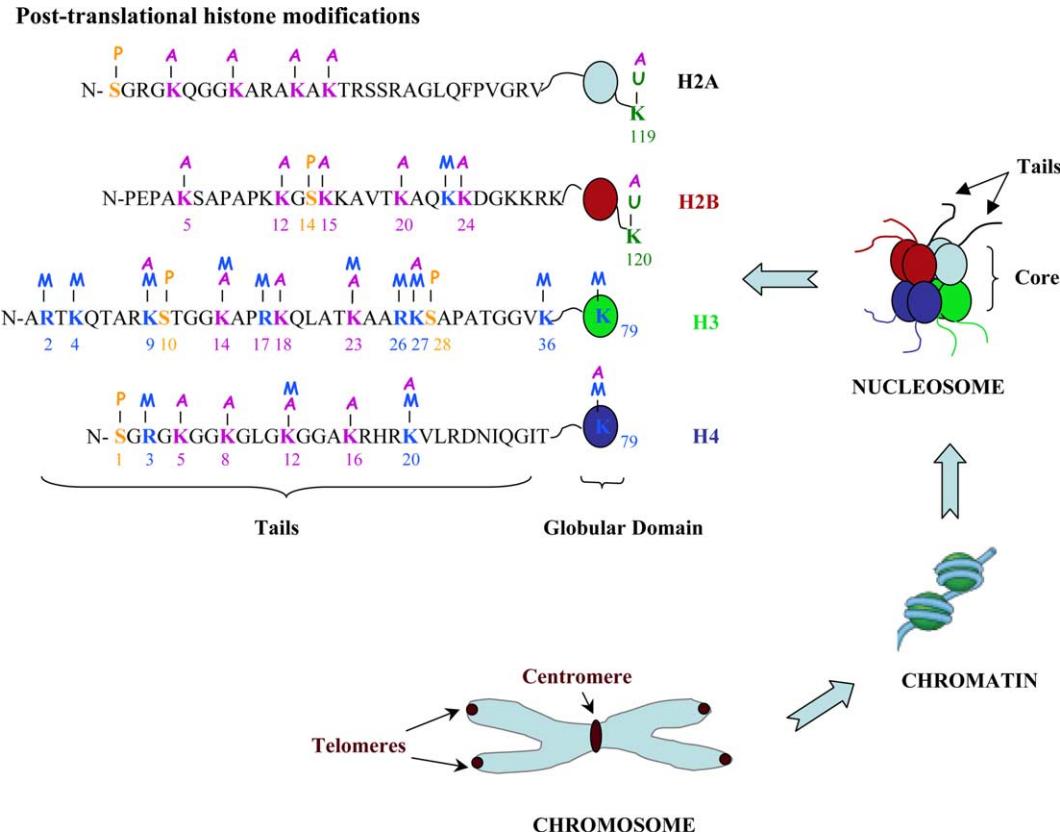


Fig. 1. Post-translational modifications on the histone tails. Modifications recently identified by mass spectroscopic techniques but unconfirmed (by mutational analysis and/or western blot with specific antibodies) are not shown. Note that Lysine 9, Lysine 14, Lysine 23 and Lysine 27 in the H3 tail and Lysine 12 and Lysine 20 in H4 can be either acetylated or methylated. Acetylation: purple; methylation: blue; phosphorylation: orange; ubiquitination: green.

replicate late. Euchromatin on the other hand may be considered as the rest of the genome, which de-condenses during interphase, contains most of the genes, is active or proficient for transcription and replicates early. In addition, chromatin organisation may change transiently in local areas of the genome as a response to cellular stimuli and/or differentiation programs.

The cell has developed mechanisms (below) to modify in a temporal/spatial manner the chromatin organisation and to ensure the maintenance of such an organisation through mitotic and meiotic cell division:

- ATP-dependent chromatin remodelling factors twist and slide nucleosomes, exposing or occluding local DNA areas to interactions with replication, DNA repair and transcription factors (reviewed in [1]).
- Post-translational covalent modifications of the histones within a nucleosome can either facilitate or hinder the association of DNA repair proteins and transcription factors with chromatin.
- Canonical histones in a nucleosome can be replaced by histone variants through a DNA-replication independent deposition mechanism. Histone variants harbour distinct information to

respond to DNA damage conditions or to override an established gene expression stage (reviewed in [2]).

- Methylation at the C-5 position of cytosine residues present in CpG dinucleotides by DNA methyltransferases (DNMTs) facilitates static long-term gene silencing and confers genome stability through repression of transposons and repetitive DNA elements. This is achieved through recognition of methyl-cytosine by specific methyl-DNA binding proteins that recruit transcriptional repressor complexes and histone modifying activities (reviewed in [3]).

The term “epigenetic” refers to the information contained in chromatin, other than the actual DNA sequence, that defines a heritable specific gene expression pattern. The above mechanisms, often operating in a coordinated way on a given locus, are responsible for the complex epigenetic network that controls gene expression programs in higher eukaryotes. Perturbation of epigenetic balances may lead to alterations in gene expression, ultimately resulting in cellular transformation and malignant outgrowth. In this review we will focus on the role of histone post-translational

modifications in the establishment and preservation of correct gene expression patterns and how deregulation and mis-targeting of these histone modifications contributes to the development of malignancies.

2. Histone post-translational modifications and “the histone code”

A variety of post-translational modifications occur on the amino terminal tail, as well as on residues located at exposed sites within the globular domain of the histones. These post-translational modifications include phosphorylation, acetylation, ubiquitination, methylation and SUMOylation (Fig. 1). Such modifications on histones can create or stabilise binding sites for regulatory proteins, like transcription factors, proteins involved in chromatin condensation or DNA repair. Histone modifications may also have the opposite effect, disrupting or occluding chromatin-binding sites. Accordingly, there are modifications that co-exist and work sequentially in a cooperative manner but are incompatible with others in the same nucleosome. That is the case for methylation of Lysine 4 H3 (K4 H3), acetylation of Lysine 14 H3 (K14 H3) and phosphorylation of Serine 10 H3 (S10 H3), all involved in transcription

activation and incompatible with the generally inhibitory H3 Lysine 9 methylation (Fig. 2, H3).

Furthermore, the role of a particular modification in transcriptional signalling may also be influenced by the degree and stability of the modification. Lysine residues may be modified with one, two, or three methyl groups, and the “status” of histone methylation determines if transcription of certain genes is activated or repressed [4, 5; reviewed in 6].

Distinct histone modifications, on one or more tails, act sequentially or in combination to form a “histone code” that is read by proteins containing specific interacting domains: bromodomain and chromodomain. These proteins are the effectors that initiate downstream biological responses such as chromosome condensation, DNA repair or transcription activation/repression (reviewed in [7]). Examples of recruitment of chromo- and bromo-domain containing proteins, leading to different transcriptional read outs are shown in Fig. 3. Thus, although the basic composition of the nucleosome may be the same over long stretches of chromatin, the specific palette of modifications on nucleosomes creates local structural and functional diversity delimiting chromatin subdomains.

The molecular basis for how the epigenetic information carried in histone tail modifications is memorised

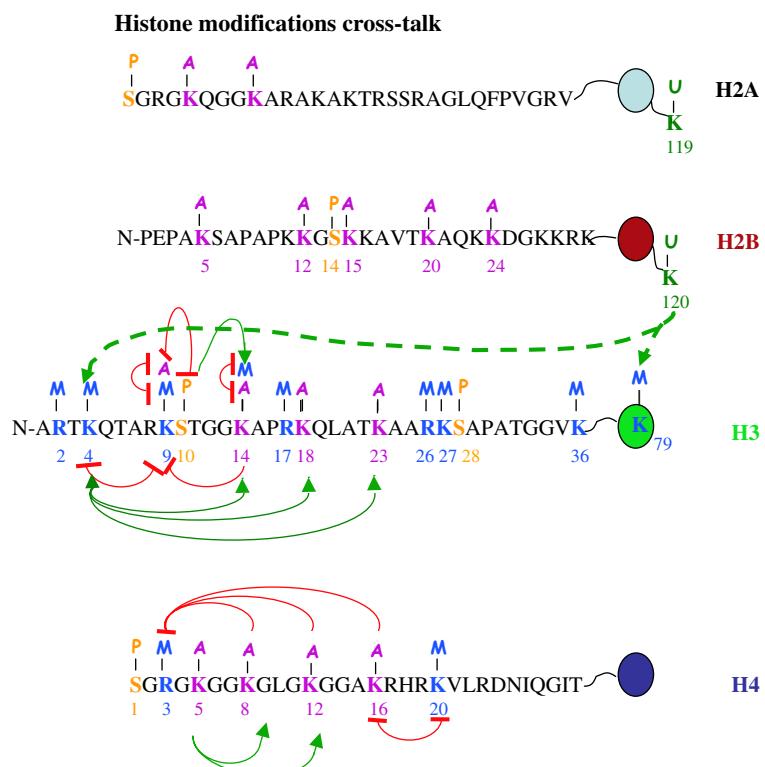


Fig. 2. Interplay between different post-translational modifications. “Compatible” modifications (those which facilitate other modifications to occur and/or can co-exist) are represented by green arrows. “Incompatible” modifications (those which negatively affect other modification and/or can not co-exist) are shown in red.

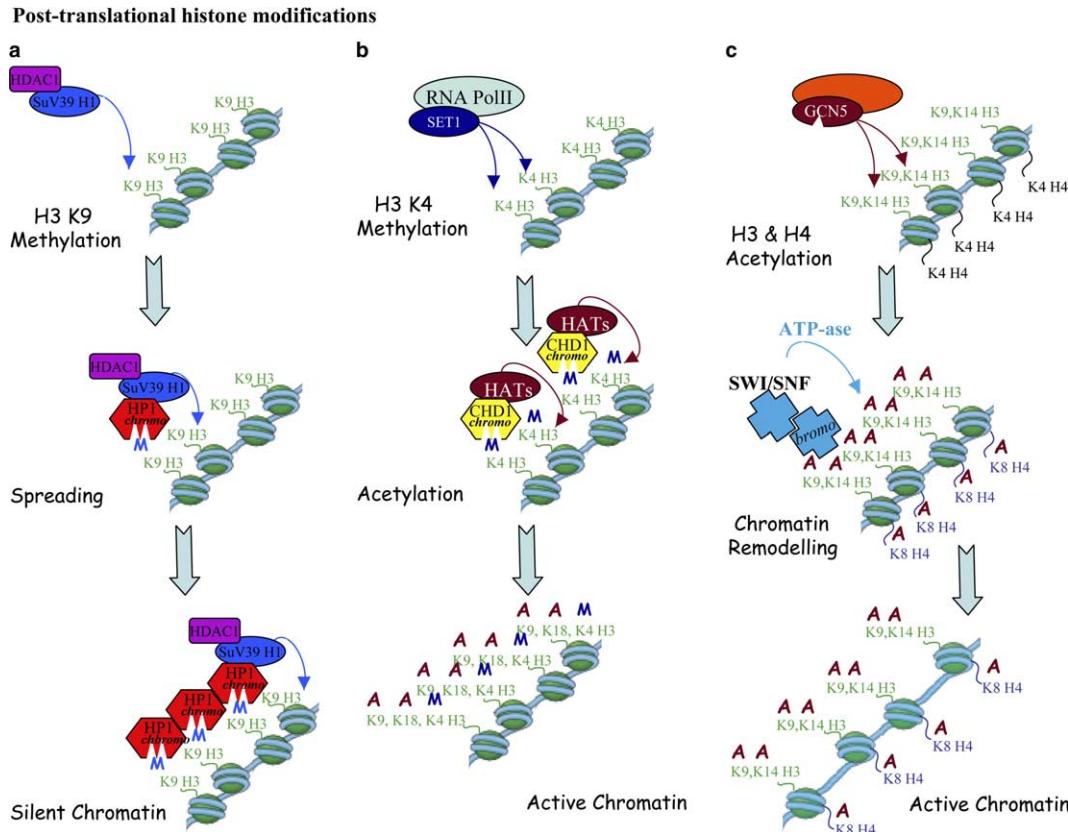


Fig. 3. Recruitment of bromo- and chromo-domain containing proteins by histone modifications. (a) Establishment of silent chromatin (heterochromatin) by lysine 9 H3 methylation: (1) SuV39H1 methylates lysine 9 H3. (2) Methylated Lysine 9 recruits the heterochromatin protein HP1 in physical association with SuV39H1. (3) Methylation of adjacent nucleosomes by SuV39H1 causes the spreading of the heterochromatin. (b) Establishment of transcriptionally active chromatin by lysine 4 H3 methylation: (1) Set1p methylates lysine 4 H3. (2) Methylated lysine 4 recruits the chromatin remodelling factor Chd1p in physical association with histone acetyltransferases. (3) Acetylation of lysine residues prevents repressive modifications to occur and recruits transcription activators. (c) Establishment of transcriptionally active chromatin by lysine acetylation: (1) GCN5 acetylates several residues within histones H3 and H4. (2) Acetylated lysines recruit the chromatin remodelling complex SWI/SNF. (3) SWI/SNF, via its ATPase activity, displaces and twists nucleosomes exposing DNA areas for interaction with the transcription machinery.

is unknown. Interestingly, biochemical data have suggested histones H3 and H4 are deposited into nascent nucleosomes as heterodimers [8]. This opens the possibility that the existing epigenetically coded H3/H4 dimers are divided on the two daughter strands, thereby forming the basis for an epigenetic memory imprint.

3. Histone acetylation and cancer

Acetylation of the e-amino group of lysine residues occurs on the four histones (Fig. 1). Broadly, acetylation of histones is linked to transcriptional activation. Therefore it is not surprising that many of the enzymes responsible for acetylation of histones at different residues were first known as transcriptional co-activators and later as enzymes. Most histone acetyltransferases take part in huge multiprotein complexes involved in locus targeting, thus providing chromosomal domain specificity in addition to the substrate specificity displayed by each individual acetyltransferase.

Based on sequence similarity histone acetyl transferases (HATs) can be organised into families, which seem to display different mechanisms of histone substrate binding and catalysis (Table 1).

The Gen5/PCAF family of HAT proteins (GNATs) function as co-activators for a subset of transcriptional activators. They contain a HAT domain of around 160 residues and directly C-terminal to the HAT domain a conserved bromodomain, which has been shown to recognise and bind acetyl-lysine residues. The wide distribution of the bromodomain among enzymes that acetylate, methylate or remodel chromatin highlight the importance of lysine acetylation in self-maintenance of a transcriptional active state and recruitment of other sources of chromatin modifying enzymes (reviewed in [7]).

The p300/CBP family is another major group of nuclear HATs that has been extensively characterised (Table 1). The members of this family are more global regulators of transcription; contain a considerably larger HAT domain of about 500 residues, and other protein

Table 1
Human histone acetyl transferases (HATs)

Family	Substrate	Complex	Role
<i>GNAT</i>			
PCAF	H3/H4, TAT, E1A, p53, PCAF, AR	PCAF	T. Coactivator
GCN5L	H3/H4, TAFs	STAGA, TFTC	T. Coactivator
ELP3	H3/H4	Elongator	T. Elongation
P300/CBP			
P300	H2A/H2B/H3/H4, p53, E1A, TAT, AR		T. Coactivator
CBP	H2A/H2B/H3/H4, TFs, E1A		T. Coactivator
<i>MYST</i>			
Tip60	H3/H4/H2A, AR	TIP60	T. Activation
MOF (MYST1)	H3/H4/H2A	MAF2	T. Activation
MOZ (MYST3)	H3/H4		T. Activation
MORF (MYST4)	H3/H4		T. Activation
HBO1 (MYST2)	H3/H4		T. Corepressor; DNA replication
<i>Transcription factors</i>			
ATF2	H4/H2B		T. Activator
TAF1 (TAFII250)	H3/H4	TFIIB	T. Factor
TFIIC90 (GTF3C4)	H3		T. Initiation
<i>Nuclear hormone-related</i>			
SRC-1 (NCOA1)	H3/H4	NCOA	T. Coactivator
ACTR	H3/H4	PCAF/P300	T. Coactivator
Others			
CIITA (HMC2TA)	114		T. Coactivator
CDYL	H4		Protamine → histone
HAT1	H4/H2A		Histone deposition

GNAT: GCN5-related acetyltransferase; PCAF: EP300/CREBP-associated factor; TAT: tyrosine aminotransferase; AR: androgen receptor; TAFs: TATA box-associated factors; ACTR: activin receptor; CBP: CREB-binding protein; p300: e1a-binding protein p300; GCN5L: general control of amino-acid synthesis 5-like 2; GTF3C4: general transcription factor 3c, polypeptide 4; HBO1: histone acetyltransferase binding to ORC; MYST: MOZ, YBF2/SAS3, SAS2, TIP60 protein family; MOZ: monocytic leukemia zinc finger protein; MORF: MOZ-related factor; NCOA1/2: nuclear receptor coactivator 1 and 2; SRC, steroid receptor coactivators; HAT1: histone aceetyl transferase 1.

domains, including a bromodomain and three cysteine–histidine rich domains (*TAZ*, *PHD* and *ZZ*) that are believed to mediate protein–protein interaction.

The MYST family of HAT proteins are grouped together on the basis of their close sequence similarities, including a particular highly conserved 370 residue MYST domain, which uses an acetyl-cysteine intermediate in the acetylation reaction, so the catalytic mechanism involved is different from that shared by the other families of HATs (reviewed in [9]). The members of the MYST family are involved in a wide range of regulatory functions including transcriptional activation, transcriptional silencing, dosage compensation and cell cycle progression (Table 1). Besides the MYST domain, many members contain a cysteine-rich, zinc-binding domain within the HAT regions and N-terminal chromodomains.

As with bromodomains, chromodomains have been found in many other chromatin regulators, including remodelling factors and histone methyltransferases. Recently, it has been shown that the chromodomain of the heterochromatin protein 1 (HP1) and the yeast CHD1 protein (Chromo-ATPase/Helicase-DNA binding domain 1) can respectively recognise methylated K9 and K4 residues within the histone H3 tail [10–12]. Hence, it is not unreasonable to speculate that some

chromodomain containing HATs might be recruited to chromatin by histone methylation.

Since the addition of an acetyl group to a lysine residue creates a new surface for protein association, and many transcription factors and chromatin regulators bind directly or indirectly acetylated histones, the maintenance of a specific histone acetylation pattern is crucial to cell proliferation. Consequently, it is not surprising that mutations or chromosomal translocations involving HAT genes result in development of malignancies (Table 4).

Several human histone acetyltransferases have been found to be involved in translocations where the resultant protein displays a ‘gain-of-function’ by deregulating HAT activity on histones or targeting lysine acetylation to new substrates. The p300 and CREB binding protein (CBP) genes are located on chromosomes 16p13 and 22q13, respectively, and are found rearranged in chromosomal translocations associated with leukaemia or treatment-related myelodysplastic syndrome. CBP fusion partners are the histone acetyltransferases Monocytic Leukaemia Zinc finger protein (MOZ) and MOZ related factor (MORF) [13]; and mixed lineage leukaemia (MLL), which encodes a K4 H3 methyltransferase (reviewed in [14]). The *MLL* gene, located at 11q23, is fused to the *p300* and *CBP* genes

giving rise to MLL-p300 and MLL-CBP fusion proteins, in which the bromodomain, HAT domain and Q region of p300 or CBP are linked to the N-terminal part of MLL, which contains AT-hooks domains that can mediate targeting to DNA. The fusion of two HATs, MOZ and CBP/p300 creates a chimeric protein consisting of the N-terminal three-quarters of MOZ (including MYST and zinc finger domains, essential for HAT activity) fused to the C-terminal 90% of CBP, containing its HAT domain and a strong *trans*-activation region. The resultant protein harbours two active histone acetyltransferase domains, binding sites for several transcription activators and the H15 region of MOZ, which has been proposed to mediate interaction with nucleosomes [9]. Translocations involving MORF and CBP or p300 are also associated with acute myeloid leukaemia and with therapy-related myelodysplastic syndrome. The resulting fusion proteins are structurally similar to the *MOZ-CBP* and *MOZ-p300* fusion proteins described above. Albeit all analogies, developmental defects in MOZ zebrafish mutants suggest that MOZ and MORF are not just redundant cellular functions [15]. MOZ fusion with another transcription-related protein, TIF2, has also recently been reported in certain cases of leukaemia (reviewed in [16]). These translocations also contained an N-terminal portion of MOZ, fused to the C-terminal part of the nuclear receptor co-activator TIF2, including its putative CBP interaction and activation domains. Recently, it has been shown that *MOZ-TIF2* confers properties of self-renewal to committed myeloid progenitors *in vitro*, with the same domain requirement for both self-renewal and leukaemic transformation [17]. Finally, MOZ fusion with the steroid receptor co-activator 2, NCOA2, as a result of the pericentric inversion [8] (p11q13), has been reported in 6 cases of acute monoblastic leukaemia [18]. The high occurrence of HAT proteins among leukaemic translocations, highlight the importance of a tight balance of histone acetylation in the execution of the hematopoietic program. In fact, MOZ plays a role in HOX regulation in normal cells [15].

Besides translocations, mutations of some HATs are associated with cancer development. In this sense, histone acetyltransferases act as tumour suppressors. Consistent with this notion, mutations that inactivate alleles of p300 and CBP cause development of hematological malignancies in mice [19,20] and mutations in p300/CBP have been identified in several cases of human leukaemia [21]. Biallelic mutations of the p300 locus have been identified in human cancers of epithelial origin [22] and exogenous expression of p300 is able to suppress the growth of human carcinoma cells *in vitro* [23]. Monoallelic mutation of the CBP locus is the genetic basis for Rubinstein–Taybi syndrome (RTS), which has been reported to be associated with increased risk of developing malignant tumours. Several essential

features of RTS are due to haploid insufficiency of the function of CBP, particularly the HAT [24,25]. Acetyltransferase activity targeted to non-histone substrates such as human or viral oncoproteins also contributes to the development of malignancies as will be discussed later.

4. Histone deacetylation and cancer

Histone lysine acetylation is a reversible post-translational process. The dynamic equilibrium of lysine acetylation *in vivo* is governed by the opposing actions of acetyltransferases and deacetylases. Deacetylation of histones by histone deacetylases (HDACs) results in a decrease in the space between the nucleosome and the DNA that is wrapped around it, thus, diminishes accessibility for transcription factors, modifying the chromatin from an open gene active euchromatin structure to a closed gene silenced heterochromatin structure. Similar to acetyltransferases, the HDACs are part of large multiprotein chromatin complexes, but in this case involved in transcriptional repression.

There are three major families of mammalian HDACs, based on homology to the yeast counterparts Rpd3, Hda1 and Sir2/Hst (Table 2). The class I HDACs, are nuclear proteins widely expressed in a variety of tissues. They show a high degree of structural homology and contain a zinc molecule at the active site as a critical component of their enzymatic pocket. This site is the main target for inhibition of deacetylase activity by most developed anti-cancer drugs. A zinc-active pocket also characterises the members of the Class II HDACs but, in comparison to class I, they have a narrower tissue distribution, are much bigger in size, and shuttle between nucleus and cytoplasm as part of their mode of action. Two members of this class, HDAC6 and HDAC10 are unique since they harbour two catalytic domains. The third HDAC family (Class III or SIR-HDACs) is quite different, both structurally and in the catalytic mechanism. Their enzymatic activity depends on the cofactor NAD⁺, which breaks down during the histone deacetylation reaction resulting in *O*-acetyl-ADP-ribose and nicotinamide (NAM) (reviewed in [26]). Interestingly, NAM inhibits the catalytic activity of SIR-HDACs whereas it has been proposed that *O*-acetyl-ADP-ribose might function in a signalling pathway that couples SIR-HDACs activity with transcriptional silencing [27].

HDACs are found *in vivo* as part of multiprotein complexes with clear functions as transcription co-repressors (Table 2). There is more than one mechanism by which HDACs may function in cancer development. On one hand, an abnormal increase in HDAC activity may result in the transcriptional inactivation of tumour-suppressor genes like p53. In fact, HDAC4, 8, and 9 are expressed to

Table 2

Human histone deacetylases (HDACs)

Family	Substrate	Complex	Role
<i>Class I</i>			
HDAC1	Histones, TP53, E2F1	Sin3, NURD	T. Corepressor
HDAC2	Histones, YY1	Sin3, NURD	T. Corepressor
HDAC3	H4, RELA	NCOR1/NCOR2-GPS2 – TBL1X	T. Corepressor
HDAC8	Histones		T. Corepressor
<i>Class II</i>			
HDAC4	Histones	NCOR1/NCOR2	T. Corepressor
HDAC5	Histones		T. Corepressor
HDAC6	Histones		
HDAC7	Histones	Sin3, NCOR2	T. Corepressor
HDAC10	Histones	NCOR2	T. Repressor
<i>Class III (Sir-tuins)</i>			
SIRT1	p53		Cell proliferation
SIRT2	Histones, Tubulin		Cell cycle, cell motility

TP53: tumor protein 53, transcription factor; E2F1: E2F transcription factor 1; YY1: Ying-Yang 1, transcription factor; RELA: subunit of NF- κ B.

Table 3

Human histone methyl transferases (HMTs)

Family	Substrate	Complex	Role
<i>Arginine HMTs</i>			
PRMT1 (HRMT1L2)	H4 (Arg3), ILE3, ETOILE, HNRPA2B1		T. Activation
PRMT4 (CARM1)	H3 (Arg1T, Arg26), TARP, CBP, PAB1	AR, PCAF, NCOA2, P300, NUMAC	T. Coactivator
PRMT5 (SKB1)	H2A, H4, SMN	Methylosome	Cell cycle, snRNP assembly
<i>Lysine HMTs</i>			
MLL1 (ALL-1)	H3 (Lys4)	SET1, MENIN	T. Activation, cell proliferation, Hematopoiesis
MLL4 (former MLL2)	H3 (Lys4)	SET1, MENIN	T. Activation
hSET1	H3 (Lys4)	SET1/ASH2/HCF1	T. Activation
SMYD3	H3 (Lys4)		T. Activation, cell proliferation
SET7/9	H3 (Lys4)		T. Activation, silencing
SET8 (PR-Set7)	H4 (Lys20)		Cell cycle, heterochromatin
DOT1L	H3 (Lys79)		T. Activation, silencing
SUV39H1/2	H3 (Lys9)	E2F1, E2F4	T. Repression, heterochromatin
Eu-HMTase1	H3 (Lys9)	E2F6	T. Repression
SETDB1 (ESET)	H3 (Lys9)		Heterochromatin, silencing
G9a (BAT8)	H3 (Lys9, Lys27)		T. Repression, silencing
EZH2	H3 (Lys9, Lys27)	EDD-EZH2	T. Repression, silencing

ILE3: subunit of NF-AT; ETOILE: HIV Rev activator; HNRPA2B1: HIV Rev trafficking; TARPP: Thymocyte cyclic AMP-regulated phosphoprotein; CBP: CREB binding protein; PAB1: poly (A)-binding protein; NCOA2: nuclear receptor coactivator 2; NUMAC: nucleosomal methylation activator complex; SMN: survival motor neuron.

a greater extent in tumour tissues than in normal tissues [28] and HDAC2 is overexpressed in tumours from mice lacking the adenomatosis polyposis coli (APC) tumour suppressor [29] (Table 5). On the other hand, the tumour suppressor RB requires the activity of Class I HDACs to exert its function (reviewed in [30]) and the tumour suppressor p53 represses the transcription of the DNA-repair helicase protein RECQL by a mechanism involving Class I HDAC activity [31]. Hence, mutations in this family of deacetylases may contribute to disease. Yet, the most common outcome of inhibition of HDAC activity is to trigger differentiation, growth arrest, and/or apoptosis of tumour cells *in vitro* and *in vivo*. These are the bases for the development of HDAC inhibitors as anti-cancer drugs (discussed below).

5. Histone methylation and demethylation and cancer

Methylation is another post-translational covalent modification that occurs on the side-chain nitrogen atoms of lysine and arginine on histones. The most heavily methylated histone is H3 followed by H4 (Fig. 1). Arginine can be either mono- or dimethylated, with the latter in symmetric or asymmetric configurations. Lysine can accept one, two or three methyl groups, resulting in mono-, di-, or trimethylated forms. The different stages of methylation on a given residue, confer different biological read outs to the modified residue [4,6], thus methylation has greater combinatorial potential with respect to other modifications. In contrast to acetylation, which correlates almost without exception with transcriptional

Table 4

Histone acetyltransferase mutations in cancer

Gene	Mutation/rearrangement	Cancer type	Reference
PCAF	Missense mutations	Epithelial cancer	[137]
P300	Bi-allelic mutations + LOH	Gastric carcinoma	[138]
	Stop codon mutations	Colon and breast cancer	[22]
	Missense mutations	Colorectal, gastric and epithelial carcinomas	[22,137,140]
	MOZ/p300 gene fusion	Acute monocytic leukaemia	[141–143]
	MLL/p300 gene fusion	Acute myeloid leukaemia	[144]
	Homozygous deletion	SiHa cervical carcinoma	[145]
	Point mutations	Rubinstein-Taybi syndrome	[146]
CBP	Stop codon mutations	Epithelial cancer	[137]
	In-frame deletion	Epithelial cancer	[137]
	In-frame deletion	Lung cancer	[147]
	Homozygous deletion	Lung cancer	[147]
	Missense mutations	Lung cancer	[147]
	MYST4/CBP gene fusion	Acute myeloid leukaemia	[148]
	MOZ/CBP gene fusion	Acute myeloid leukaemia	[142,149–154]
	MOZ/CBP gene fusion	Acute myelomonocytic leukaemia	[155]
	MORF/CBP gene fusion	Myelodysplastic syndrome	[156,157]
	MORF/CBP gene fusion	Acute myeloid leukaemia	[158]
	Internal tandem duplication+LOH	Esophageal carcinoma	[159]
	Stop codon mutation	Colon cancer	[130]
	MLL/CBP gene fusion	Therapy-related leukaemia	[160–163]
	Deletions	Rubinstein-Taybi syndrome	[146,164]
	Intragenic duplications	Rubinstein-Taybi syndrome	[146]
	Point mutations	Rubinstein-Taybi syndrome	[165]
MOZ	MOZ/TIF2 gene fusion	Acute myeloid leukaemia	[142,166–168]
	MOZt(2;8)(p23;pl 1) translocation	MDS	[169]
MORF	MORFt(10;17)(q22;q21) translocation	Uterine leiomyomata	[170]
NCOA1	PAX3/ NCOA1 gene fusion	Rhabdomyosarcoma	[171]

LOH: Loss of heterozygosity.

Table 5

Histone deacetylase changes in cancer

Gene	Mutation/rearrangement	Cancer type	Reference
HDAC1	Overexpression	Mormone refractory prostate cancer	[172]
	Overexpression	Gastric cancer	[173]

MDS: myelodysplastic syndrome.

activation, histone methylation can result in either transcription activation or repression, depending on the modified residue and the palette of other modifications decorating the histone simultaneously (Fig. 3).

5.1. Histone arginine methylation

Protein arginine methyltransferases (PRMTs) catalyse the transfer of methyl groups from *S*-adenosyl-L-methionine (SAM) to the guanidino nitrogens of arginine residues [32] (Table 3). PRMTs share a conserved catalytic core, but have little similarity outside the core domain, that is, the amino- and/or carboxyl-terminal regions, which likely determine the substrate specificity and the ability to form oligomers [33].

The type I histone methyltransferases catalyse asymmetric dimethylation of arginine. This family include

PRMT1 and the CARM1 (Coactivator-Associated R-Methyltransferase 1)/PRMT4, which, respectively, methylate histone H4 Arginine 3 and histone H3 Arginine 2, Arginine 17 and Arginine 26 [34,35]. Other less characterised members of this family are PRMT2 and PRMT3, both homologues of PRMT1 and contain SH3 domain and C2H2 zinc-finger motifs respectively, which may determine its substrate specificity [36,37].

The type II PRMTs catalyse the formation of symmetric dimethylarginine. This group include PRMT5/JBP1 [38] and the novel PRMT7 [39]. PRMT5 associates *in vivo* with the ATPase-chromatin remodelling hSWI/SNF complex, and display substrate specificity for Arginine 8 (R8) H3 and R3 H4 as preferred sites of methylation. PRMT7 contains two binding sites for the donor *S*-adenosyl-L-methionine (SAM) and exhibit histone methyltransferase activity against H4 [40].

Histone arginine methylation correlates with transcription activation of a variety of genes. Several laboratories have shown functional synergy between arginine methylation and histone acetylation in transcription activation events [41–43]. In fact, the arginine methyltransferases CARM1/PRMT4 and PRMT1 physically associate with histone acetyltransferases to form co-activator complexes, which, acting in a cooperative manner, mediate the function of the transcription factor Nuclear factor κ B (NF- κ B) and the tumour suppressor p53 [44,45]. In contrast, PRMT5 has been identified in promoter complexes where it has been proposed to function as a transcriptional repressor by methylating histones [46,47].

Work from several laboratories argues for the importance of the arginine methyltransferases in the regulation of cell growth and proliferation: CARM1 is overexpressed in androgen-dependent and independent prostate carcinomas [48]. Overexpression of PRMT5 causes a reduction in the expression of the tumour suppressors *ST7* and *NM23* correlating with increased R8 H3 methylation and increased transformation properties of human cells [49]. Finally, the tumour suppressor DAL-1 (differentially expressed in adenocarcinoma of the lung)/4.1B, whose expression is lost in primary non-small-cell lung carcinomas, physically interacts with PRMT3 inhibiting the methyltransferase activity against its cellular substrates [50]. Thus, arginine methylation seems to be an important mechanism to regulate expression/function of genes involved in tumour suppression.

5.2. Histone lysine methylation

Lysine methylation occurs in several residues on histones H3 and H4. Some of these residues are also substrates for acetylation (Fig. 1). With almost no exception, the enzymes that catalyse the methylation of lysine residues of histones share strong homology in a 140 aminoacid catalytic domain known as the SET domain (standing for Su(var), Enhancer of Zeste and Trithorax) (Table 3). Lysine methylation is extremely diverse in its consequences as it can promote transcription activation, mediate transcriptional repression, trigger heterochromatin formation and even chromosome loss.

Methylation of K4 on histone H3 correlates with euchromatic areas proficient for transcription and trimethylation of K4 H3 specifically accumulates upon activation of transcription [4,5,51]. Methylated K4 creates a binding site for the chromodomain containing protein Chd1p, which recruits acetyltransferase activity to activate transcription [12]. K4 methylation also recruits chromatin-remodelling activity that contributes to the nucleosome changes necessary during transcription activation [52].

There are several human Lysine 4 H3 methyltransferases, which display homology to the yeast Set1 protein

beyond the catalytic SET domain (Table 3). The enzymatic activity and possibly the substrate specificity of the “Set1 family” of enzymes depend on their assembly into a multiprotein complex, which is also evolutionarily conserved [53]. Some of the lysine 4 H3 methyltransferases are only proficient in catalysis of monomethylation (for example Set7/9) whereas others can catalyse up to tri-methylation (MLL1) due to the presence of specific residues in the catalytic domain.

Similarly to K4, methylation of K36 and K79 on histone H3 also “marks” euchromatic areas and correlates with transcription activation [54,55]. There are several human homologues of the yeast K36 methyltransferase Set2 protein (NDS1, NSD2/MMSET, WHSC1, NSD3, ASH1, HIF1) however, no catalytic activity has been reported so far for any of them. Still, all members are linked to transcription regulation and several of them are involved in human disease [56]. K79 methylation is catalysed by an evolutionary conserved protein called DOT1 [57]. This enzyme has a catalytic domain with a unique organisation that resembles more an arginine methyltransferase than a lysine methyltransferase. The fact that the substrate, K79, lies well inside the globular domain of the histone H3, whereas all other methylated lysines are in the exposed amino-terminal tail, may account for the structural peculiarities of these enzymes [58].

Methylation of Lysine 20 on histone H4 is catalysed by SET8 (Pr-Set7). This modification occurs at the onset of mitosis and is involved in chromatin condensation, necessary to ensure proper chromosome segregation [59]. The chromatin-associated factor HCF1 (herpes simplex virus Host-Cell Factor 1) regulates the cell cycle changes in K20 H4 methylation, inhibiting a PR-Set7-dependent switch during mitosis from monomethyl to dimethyl K20 H4 and preventing in this way defective mitotic chromosome behavior [60]. In contrast to humans, K20 H4 methylation in yeast does not have any impact in chromosome condensation and transcription but serves as a DNA damage signal to recruit checkpoint proteins to damaged DNA (discussed below).

Methylation of K9 on H3 (mainly tri-methylation) triggers formation of constitutive heterochromatin by serving as a mark to recruit the heterochromatin formation protein (HP1). K9 mono- and di-methyl forms are involved in retinoblastoma mediated transcriptional repression of euchromatic genes [61] and in establishment of facultative heterochromatin in the mammalian inactivated X chromosome [62–64]. Methylation of K27 on histone H3 is also a signal for transcription repression and maintenance of stable epigenetic silencing via recruitment of the Polycomb Repressive Complex (PRC1) [65–68]. Although K9 and K27 methylation might appear as redundant cellular functions, recent work demonstrates that both modifications exhibit distinct distributions at different

loci and overlapping but distinct patterns of Polycomb recruitment [69].

Methylation of K9 H3 is catalysed by the “SuV39 family” of histone methyltransferases, which include the proteins Suv39h1, Suv39h2, G9a, ESET/SETDB1 and EuHMTase1. Although they have common substrate specificity, the catalytic activity of these enzymes differs: Suv39h1/Suv39h2 are tri-methylases whereas ESET/SETDB1 is a di-methylase, only proficient for tri-methylation in association with mouse ATFa-associated modulator (mAM) [70,71]. The G9a HMT is responsible for the vast majority of K9 H3 dimethylation and most monomethylation in mouse embryonic stem cells [72]. Methylation of K27 from histone H3 [73] is also catalysed by G9a, while similarly, EZH2, the catalytically active component of the Polycomb Repressive Complex 2 (PRC2), is capable of methylating K9 and K27 of histone H3 [65,66]. Surprisingly, EZH2 is structurally more similar to the K4 methyltransferases than to the SuV39 family.

In agreement with the biological functions of K4 and K27 methylation, their corresponding enzymes belong to the Trithorax Group (TrxG) and Polycomb Group (PcG) of proteins, positive and negative regulators of transcription respectively. A strict equilibrium between PcG and TrxG function is essential for the maintenance of heritable transcription patterns of the homeotic (*Hox*) genes during development, hematopoiesis, X-chromosome inactivation and control of cell proliferation (reviewed in [74]). Thus, it is not surprising that several lysine methyltransferases are closely related to human cancer (Table 6).

EZH2 is highly expressed in metastatic prostate cancer, lymphomas and breast cancer [75,76]. EZH2 transcription is tightly regulated by the RB/E2F pathway and ectopic expression of EZH2 is capable of providing a proliferative advantage to primary cells. Thus, EZH2 is a *bona fide* oncogene [77].

Chromosomal rearrangements involving MLL1 occur in more than 80% of cases of infant acute leukaemia and therapy-related leukaemia (reviewed in [78]). Most of these reorganisations involve the amino terminal part of MLL1, excluding the catalytic SET domain, fused to about 60 different partners. Thus, the classic model to explain the role of MLL1 in leukaemia was a gain of function for the fusion oncogenic protein that would target transcription activation or repressor activity to new substrates via the DNA interacting motif of MLL1 (reviewed in [79]). However, it is conceivable that alternative mechanisms might contribute to malignancy since this protein contains multiple functional domains (AT-hooks, PHD-fingers, transactivation domain and SET domain). In fact, dimerisation of MLL1 has been reported as a new mechanism for MLL1-dependent transformation [80]. Furthermore, recent work from several laboratories suggests a possible role for the enzy-

matic K4 H3 methyltransferase activity of MLL1 and other members of the “Set1 family” in tumourigenesis: (a) The MLL4 (former MLL2) complex binds to the tumour suppressor protein MENIN (Multiple Endocrine Neoplasia type I gene). This interaction is lost in tumour-derived cells, pointing to K4 methylation as the regulatory mechanism involved in the MENIN tumour suppressor function [53]. Moreover, MLL4 is amplified in epithelial cancers such as glioblastoma and pancreatic cancer [81]; (b) MLL1 is also found in physical association with MENIN [82]. Cooperative interaction between MENIN and MLL1 plays a central role in MENIN activity as a tumour suppressor since loss of function of either MLL or MENIN results in down-regulation of p27Kip1 and p18Ink4c expression and deregulated cell growth [83]; (c) SMYD3 is overexpressed in the majority of colorectal and hepatocellular carcinomas. Overexpression of the SMYD3 K4 H3 methyltransferase activity enhances cell proliferation [84]; and (d) HALR (MLL3) maps to chromosome 7q36, which is associated with leukaemia and developmental defects [85]. Thus, overexpression, mis-targeting and/or deregulation of K4 H3 methyltransferase activity might result in aberrant regulation of gene expression and cellular transformation.

5.3. Histone demethylation

Until very recently, the dogma was that methylation is an irreversible process. This conclusion was raised from the observation that the half-life of histones and methyl-lysine residues within them are the same (reviewed in [86]). In contrast to acetylation or phosphorylation, which have fast turn over and fit the expected features of a regulatory modification, methylation was favoured as a permanent mark and therefore associated more with defining chromosomal sub-domains (euchromatin *versus* heterochromatin) rather than specific transcriptional stages. However, this model could not account for the changes in H3 K4 and R17 methylation observed upon activation of transcription [4,87] or changes in K9 H3 methylation occurring upon repression of transcription within euchromatic areas [61].

The last half-year has witnessed the identification of the first arginine and lysine demethylases. As proposed by Kouzarides and co-workers, the removal of a methyl group from histones seems to be achieved in diverse ways (reviewed in [86]). Methylated arginines can be erased from histones by a deimination reaction that results in the conversion of arginine into citrulline. This process affects methylated and non-methylated arginines, thus, it is not properly an “arginine de-methylation event”, although it is certainly responsible for the turn over of this modification. Deimination of arginines on histone H3 and H4 is catalysed by PADI4 [88,89]. In

Table 6
Histone methyltransferase mutations in cancer

Gene	Mutation/rearrangement	Cancer type	Reference
MLL1/ALL1	MLL-PTD	Acute myelogenous leukaemia	[174–183]
	MLL-PNTD	Acute lymphoblastic leukaemia	[184]
	MLL gene amplification	Acute myelogenous leukaemia	[185–196]
	MLL gene amplification	MDS	[185,186,191,195,197]
	MLL gene amplification	RAEB	[198]
	MLL gene amplification	Acute lymphoblastic leukaemia	[199]
	Trisomy 11	Acute myelogenous leukaemia	[176,200,201]
	Trisomy 11 + translocation	MSD + myelomonocytic leukaemia	[155]
	Trisomy 11 + PTD	Acute monocytic leukaemia	[161]
	Trisomy 11 + PTD	MDS	[202]
	Multiple rearrangements	Acute Leukaemia + MDS	[203–207]
	Multiple rearrangements	Erythroid leukaemia	[208]
	MLL/AF17 gene fusion	Acute myelocytic leukemia	[209–212]
	MLL/LASP1 gene fusion	Acute myelocytic leukemia	[213]
	MLL/LAF4 gene fusion	Acute lymphoblastic leukaemia	[214]
	MLL/AF10 gene fusion	Acute myeloid leukaemia	[215,216]
	MLL/AF10 gene fusion	Acute lymphoblastic leukaemia	[217]
	MLL/AF10 gene fusion	Acute monocytic leukaemia	[218]
	MLL/SEPTIN6 gene fusion	Acute myeloid leukaemia	[219,220]
	MLL/FBP17 gene fusion	Acute myeloid leukaemia	[221]
	MLL/Gephryn gene fusion	Acute monoblastic leukaemia	[222]
	MLL/AF15ql4 gene fusion	Acute myeloid leukaemia	[223]
	MLL/AF9 gene fusion	Acute myeloid leukaemia	[224–228]
	MLL/AF9 gene fusion	Acute lymphoblastic leukaemia	[229]
	MLL/CIP29 gene fusion	Acute myelomonocytic leukaemia	[230]
	MLL/RASGAP gene fusion	Acute myeloid leukaemia	[231]
	MLL/AF-1p gene fusion	Acute lymphoblastic leukaemia	[232]
	MLL/AF5Q31 gene fusion	Acute lymphoblastic leukaemia	[211,233]
	MLL/AF4 gene fusion	Burkitt-like lymphoma	[234]
	MLL/AF4 gene fusion	Acute lymphoblastic leukaemia	[235–243]
	MLL/ENL gene fusion	Acute lymphoblastic leukaemia	[244–246]
	MLL/ELL gene fusion	Acute myelomonocytic leukaemia	[247]
	MLL/ELL gene fusion	Acute myeloid leukaemia	[244]
	MLL/EEN gene fusion	Acute myeloid leukaemia	[248]
	MLL/GRAF gene fusion	Acute monocytic leukaemia	[249]
	MLL/LPP gene fusion	Acute myeloid leukaemia	[250]
	MLL/TET1 gene fusion	Acute myeloid leukaemia	[251]
	MLL/LCX gene fusion	Acute myeloid leukaemia	[220]
	MLL/AF6 gene fusion	Chronic eosinophilic leukemia	[252,253]
	MLL/AF3p21	Acute monocytic leukaemia	[254,255]
	MLL/NUP98 gene fusion	Acute myelocytic leukemia	[256]
	MLL/GAS7 gene fusion	Acute myeloid leukaemia	[257]
	MLL/AFX gene fusion	Acute leukaemia	[258]
	MLL/ACACA gene fusion	Acute leukaemia	[259]
	MLL/SELB gene fusion	Acute leukaemia	[259]
	MLL/SMAP1 gene fusion	Acute leukaemia	[259]
	MLL/TIRAP gene fusion	Acute leukaemia	[259]
MLL2	19q13.1 amplification	Solid tumors	[81]
MLL3(MLL4)	7q36 Deletion	Acute myeloid leukaemia	[260]
SMYD3	Overexpression	Colorectal/hepatocellular carcinomas	[84]
EZH2	EZH2 amplification	Primary breast tumor	[77]
	Aberrant expression	Hodgkin's lymphoma	[261,262]
	Overexpression	Breast carcinoma	[76,263]
	Overexpression	Prostate cancer	[75]

PTD: partial tandem duplication; PNTD: partial non-tandem duplication; MDS: myelodysplastic syndrome; RAEB: refractory anaemia with excess of blasts.

vivo, the estrogen-regulated *pS2* promoter undergoes deimination of H3 when the gene is downregulated, thus exhibiting opposing features to PRMT1 and CARM1

arginine methylation. Since replacement of arginine by citrulline avoids further methylation of this residue, re-setting has to take place either by the action of

aminotransferase enzymes that can convert citrulline back into arginine or replication dependent new histone deposition.

Histone lysine methylation can be reverted by an amino-oxidase reaction, which produces an unmethylated lysine. The first identified lysine demethylase, LSD1 (KIAA0601), is a FAD-dependent amine oxidase with substrate specificity for methylated K4 on histone H3 [90]. LSD1 is found in association with several transcriptional repressor complexes [91,92] and RNAi knock-down of LSD1 results in an increase K4 methylation and concomitant derepression of the target genes [90]. Surprisingly, LSD1 is also part of the transcription activation complex that contains the Lysine 4 H3 methyltransferase MLL1 [ALL-1] [93]. The presence of MLL1 and LSD1 in the same protein complex, suggests that a very fine balance between methylated and unmethylated Lysine 4 H3 is crucial for the control of target promoters.

The arginine and lysine de-methylases identified so far revert only specific methylation statuses: PADI4 acts only on unmethylated or monomethyl-arginine, while LSD1 can demethylate only di-methyl lysine. Hence, the discovery of demethylases does not conflict with the finding that certain methyl-statuses remain on promoters after transcriptional changes have been operated [94,95].

6. Other modifications

Phosphorylation is another covalent post-translational modification of histones. The main substrate for phosphorylation is histone H3. The amino terminal tail Serine 10 (S10) of H3 can be phosphorylated with completely opposite effects: S10 phosphorylation is necessary to initiate chromosome condensation in the pericentric heterochromatin, by recruiting condensin, and subsequent spreading throughout the genome during the G2–M phase transition in mitosis and meiosis (reviewed in [96]). Conversely, phosphorylation of S10 H3 has an important role in the transcriptional activation of eukaryotic genes by promoting acetylation of K14 on the same histone tail ([97]; reviewed in [96]). Mitosis-specific phosphorylation of histone H3 also occurs on S28 and Threonine 11 (T11) at the onset of chromosome condensation, suggesting that combination of mitotic phosphorylation at S10, S28 and T11 may have a different read out than the individual S10 phosphorylation coupled to transcriptional activation. Members of the aurora AIR2–Ipl1 kinase family catalyse histone H3 phosphorylation at S10 during mitosis in several organisms. Their activity is counterbalanced by type1 phosphatases (PP1) in a cell cycle regulated manner. Recently, it has been shown that the histone variant H2AX is phosphorylated at S139 by a member of the

phosphatidylinositol 3-kinase-like kinase (PI3KK) family. This modification facilitates post-replication DNA repair by recruiting cohesin, a protein complex that holds sister chromatids together [98].

The ε-amino group of histone lysine residues are also subject to modification by ubiquitin and ubiquitin-like proteins such as SUMO (Fig. 1). Due to the large size of these modifications, it is not clear whether SUMOylation and ubiquitination directly affects nucleosomal structure or packing or whether this modification serves to promote/inhibit interaction with non-histone proteins, or both (reviewed in [99]). Histone ubiquitination is generally associated with increased gene expression. Actually, monoubiquitination of histone H2B in yeast is required for methylation of histone H3 at K4 and K79, two activating modifications [5,100–102]. The mechanism by which ubiquitination promotes methylation seem to involve recruitment of proteosomal ATPases by ubiquitin-modified H2B [103]. In contrast, modification of transcription factors and histones by SUMO is generally associated with decreased gene expression by improving the association of the substrates with HDAC1 and HP1, two transcriptional corepressors. Both SUMOylation and ubiquitination are reversible, and dynamic cycles of conjugation/deconjugation seem to be essential for the proper regulatory activity of these modifications [104,105].

7. Other substrates

In addition to catalysing histone acetylation, a number of HAT proteins, including CBP/p300 and PCAF, have been shown to acetylate a myriad of transcription-related proteins. These include DNA-binding transcription factors such as p53, ELK1, HMG1(Y), TCF, NF-κB, MyoD, GATA1, E2F1, HNF4, where acetylation has been shown to enhance the DNA-binding affinity of the affected protein; transcriptional co-regulators, like ATCR, b-Catenin, c-Myc and RB; and also general transcription factors, for instance TFIIE, TFIIF and TFIIB, which are known to be acetylated although the biological significance remains unclear.

Acetyltransferase activity targeted to non-histone substrates such as human or viral oncoproteins also contributes to the development of malignancies: the adenovirus E1A mediates its effects on cellular transformation by interacting with cell growth regulatory factors. E1A can be acetylated by CBP/p300 and by PCAF. Acetylation of E1A disrupts the association of E1A with transcription repressor complexes thus, promoting aberrant gene activation [106]. The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Acetylation of c-MYC by either hGCN5/PCAF or TIP60 results in a dramatic increase in protein stability. The data reported here suggest a conserved

mechanism by which acetyltransferases regulate c-MYC function by altering its rate of degradation [107].

SUMOylation and ubiquitination may affect transcription by modification of non-histone proteins including histone deacetylases (HDAC1), tumour suppressors (PML, p53) and transcription factors (c-myc and glucocorticoid receptor GR) (reviewed in [99]). Aberrant SUMOylation/ubiquitination results in defects in subcellular localisation and alters the degradation rate of factors important in regulating cell proliferation and differentiation. In this line, the PML-RAR fusion protein expressed in acute promyelocytic leukaemia, is not SUMO modified whereas arsenic trioxide, an effective treatment for this disorder, restores SUMOylation of the fusion protein [108].

Lysine methylation has emerged as a novel mechanism to regulate tumour suppressor p53. Methylation of one residue within the carboxyl-terminus regulatory region of p53 is catalysed by methyltransferase SET9/7 to stabilise the half-life of the protein and maintaining it restricted to the nucleus [109].

8. Working as a team: interplay between histone modification, DNA methylation, ATP-chromatin remodelling and small double-stranded RNA silencing

8.1. Cross-talk between histone modifications

The nature of the histone code predicts that histone modifications impinge on each other by acting as molecular switches, enabling or blocking the setting of other covalent marks (reviewed in [110]). It also predicts a chronology in the establishment of a specific modification pattern. Both assumptions seem to be true. It is known that in gene activation, phosphorylation of histone S10 H3 facilitates acetylation of K14 and methylation of K4, resulting in an open chromatin conformation [97,111]. S10 phosphorylation also facilitates acetylation of K9, thereby preventing the setting of repressive Lys 9 methylation marks [112]. Also on histone H3, K4 methylation facilitates acetylation by creating a specific binding site for the chromodomain containing protein Chd1, component of SAGA and SLIK HATs complexes [12]. Regarding timing, upon estrogen stimulation, H3 is acetylated initially at K18, then at K23, and finally methylated at R17 [43]. Also, ordered cooperative modification of histones seems to be essential for transcriptional activation by the tumour suppressor p53. In particular, methylation of R3 H4 by PRMT1 is followed by p300 acetylation of H4, which precedes the accumulation of CARM1 and consequent R17 H3 methylation [45].

The cross-talk can take place even between modifications on different histones. For example, ubiquitination

of histone H2B K123 is required for an efficient methylation of K4 H3 and K79 H3, both involved in transcriptional activation [100–102].

8.2. Cross-talk with DNA methylation

DNA methylation is the most studied epigenetic mechanism. While the vast majority of the genome is unmethylated, promoters of certain number of genes undergo DNA methylation of CpG islands. This modification brings about an inheritable chromatin state of transcriptional repression. DNA methylation affects histone modifications and vice versa. Data in different systems suggest a range of models with respect to the temporal order in which this two epigenetic events occur and their impact on the process of transcription (reviewed in [113]). Methyl-CpG enriched regions target methyl-CpG-binding proteins, which in turn recruit repressor complexes containing histone deacetylases [114] as well as histone methyltransferases [115]. Thus, DNA methylation seems to precede histone modification in the establishment of heterochromatin. However, there are data supporting DNA methylation as a secondary event, induced by an already silenced chromatin. Studies on the kinetics of silencing of transgenes show that loss of histone acetylation and H3 Lys 4 methylation are the first steps in the sequence of events, leading to reversible transcriptional repression; methylation of K9 H3 and methylation of CpG sites on promoter DNA are later events that 'lock' the repressed gene in a stable silenced chromatin state [116]. Similarly, it has been shown in fungi that trimethylated K9 H3 marks chromatin regions for cytosine methylation [117–119].

The order of events leading to heterochromatin formation may differ from organism to organism and from gene to gene. In any case, the proper epigenetic control of gene expression requires the cooperation of DNA methylation and histone modifications, and disruption of either of those processes leads to aberrant gene expression seen in almost all human cancers.

8.3. Cross-talk with ATP-dependent chromatin remodelling

ATP-dependent nucleosome remodelling has been linked to histone modification either as a pre-requisite to facilitate accessibility of the modifying enzymes or as the read out of a certain modification.

Histone acetylation/deacetylation activities are coupled to ATPase chromatin remodelling: the human nucleosome remodelling activities CHD3 and CHD4 (chromo-ATPase/helicase-DNA binding domain 3 and 4) are components of the transcription repressor complex NRD [120], whereas the chromatin remodelling protein Chd1 (chromo-ATPase/helicase-DNA binding

domain 1) is a component of the SAGA and SLIK histone acetyltransferase complexes.

The K4 H3 methyltransferase MLL1 [ALL-1] physically interacts with the chromatin remodelling factor hSNF5/INI1 [121], which is a tumour suppressor. Furthermore, K4 H3 methylation serves as a mark to recruit ISWI to chromatin to activate transcription [122].

Finally, the chromatin remodelling complexes are in charge of the histone deposition that occur independent of DNA replication, which might set up the bases for the epigenetic inheritance of the histone modification patterns (reviewed in [123]).

8.4. Small double-stranded RNAs

There are two main RNA-guided epigenetic mechanisms: RNA-directed DNA methylation (RdDM), which results in covalent modification of cytosines in the DNA, and RNAi-mediated heterochromatin formation, which targets histone methylation (typically methylation of lysine 9 of histone H3) to centromeric areas.

The small RNAs, 21–26 nucleotides (nt) in length, produced by the RNaseIII enzyme Dicer, can direct epigenetic alterations, such as gene silencing and heterochromatin formation, by incorporating themselves into silencing-effector complexes and guide them to complementary homologous DNA sequences (reviewed in [124]). Although, so far most of the data regarding RNA-mediated epigenetic pathways come from insect, plants and fungi, increasing evidence supports the existence of such mechanisms in vertebrates. Mammals have counterparts of the RdDM enzymatic machinery and *de novo* methylation of cytosines outside of the CG dinucleotide context, which is the result of RdDM [125], has been reported in mammals [126]. The α -satellite repetitive array, present in all human centromeric regions produces transcripts, which are processed by Dicer [127]. Remarkably, in dicer-deficient chicken cells heterochromatic proteins (Cohesin and HP1) delocalise, indicating a disruption of heterochromatin targeting by the RNAi machinery.

The discovery of RNAi-mediated nuclear processes has increased the complexity of the epigenetic network: RNAi-mediated chromatin modifications are important to determine patterns of gene expression and chromosome behavior. Thus, the RNAi enzymatic machinery has the potential to contribute to diseases such as cancer and chromosomal disorders.

9. The histone code for DNA damage

As we have discussed, post-translational histone modifications set up a “code” that can be read by cellular factors bringing about specific responses. Although this review focuses on the regulation of gene expression,

the histone code also transmits information to sense and respond to DNA damage [128]. Generation of double-strand breaks represents an important source of translocations and other gross chromosomal alterations frequently seen in cancer cells.

Phosphorylation of the histone variant H2AX (Serine 126) occurs extremely fast and propagates over ~100 Kb around a single double-strand break site. Phosphorylated H2A (γ -H2AX) contributes to repair by recruiting the sister chromatid cohesion factor, cohesin, which is important for efficient post-replicative double-strand break repair [98]. Recently, lysine methylation has been identified as a novel damage-specific histone mark: methylated K79 H3 contributes to DNA repair by targeting 53BP1 to DNA double-strand breaks [129] and methylation of K20 H4 controls recruitment of Crb2 to sites of DNA damage in yeast [130]. Hence, specific histone modifications seem to accumulate in “foci” at the damaged DNA sequences facilitating the recruitment of a subset of damage response proteins and contributing in this way to genome integrity.

10. Therapeutics and future perspectives

In contrast to genetic events, the possibility of reversing epigenetic codes may provide new targets for therapeutic intervention. DNA methylation is tightly connected to cancer development in two possible ways: on one hand, oncogenesis may result from hypermethylation of tumour-suppressor genes, whereas global genomic hypomethylation could enhance oncogene expression and genomic stability (reviewed in [131]). Genomic hypomethylation may also cause genomic instability since demethylation predisposes DNA to strand breakage and recombination within derepressed repetitive sequences (reviewed in [132]). Drugs that inhibit DMTs activity, such as procaine and zebularine, are on clinical trials as anti-cancer therapy (reviewed in [133]). Furthermore, the use of 5-azacytidine has already been approved by the US Food and Drug Administration for the treatment of myelodysplastic syndromes. Certainly, targeting epigenetic marks to control the progression of cancer is no longer science fiction.

Several cancer associated mutations and chromosomal translocations result in repression of transcription through abnormal recruitment or overexpression of HDACs. This is the rationale for the development of HDAC inhibitors as a new class of anti-cancer therapy. Currently, HDACs are molecular targets for the development of enzymatic inhibitors to treat human cancer, and six structurally distinct drug classes have been identified with *in vivo* bioavailability and intracellular capability to inhibit many of the known mammalian HDACs

(reviewed in [134]). Initial clinical trials indicate that HDAC inhibitors from several different structural classes are very well tolerated and exhibit clinical activity against a variety of human malignancies. Although the molecular basis for their anticancer selectivity remains obscure to date, the fact is that HDAC inhibitors have the potential to modulate additively or synergistically the activity of other therapeutic agents. Thus HDAC inhibitors, in combination with chemical drugs or radiotherapy, can reduce uncontrolled cell proliferation and apoptosis (reviewed in [134]).

Although treatment with DMTs and HDAC inhibitors results in overall positive effects in control of cell proliferation, they are not 100% selective as they often target all members of a family of enzymes rather than an individual one. In the past decade, the targeting and inhibition of specific mRNAs by RNA molecules has become the big challenge to achieve maximum specificity in anti-proliferative therapy (reviewed in [135]). Double stranded RNA (dsRNA) and small inhibitory RNA (siRNA), can selectively and efficiently inhibit expression of specific oncogenes, expressed in cancer cells but not in normal cells. Shutting down the expression of cancer-promoting genes by siRNA has proven to be an effective approach against several cancer models. Cells infected with viruses express long dsRNA that can trigger the induction of the anti-proliferative cytokines and interferons, thereby preventing spread of the virus. Taking advantage of this antiviral response, the dsRNA killing strategy (DKS), based on the *in situ* generation of dsRNA that can induce those antiviral defenses specifically in cancer cells, has been developed recently. DKS has the potential to be applicable to a wide range of tumours, emerging as a powerful tool for cancer treatment (reviewed in [135]).

The increasing evidence for a direct link between histone methyltransferases and cancer, together with the discovery of demethylases bring to focus these families of enzymes as putative targets for cancer therapy. SMYD3 is clearly involved in the development of colorectal and hepatocellular carcinomas, thus, it is an excellent therapeutic target [84]. SMYD3 is particularly attractive since it contains enzymatic activity and binds to a specific sequence of DNA. MLL1 and MLL4 are found in acute myelogenous leukaemia/myelodisplastic syndromes and solid tumours, respectively [78,79,81]. Future research needs to be done to firmly prove a role of overexpression of the enzymatic activity in development of malignancy as the first step for drug targeting. The identification and characterisation of novel histone demethylases is of great importance, in analogy to HDAC inhibitors therapy. Since some histone lysine methylations are marks for DNA damage, inhibitors of histone lysine demethylases could be useful in the control of genome reorganisations due to defects in DNA double-strand breaks.

In most cancers, the molecular network associated with malignancies is extremely complex, hence it is often necessary to target more than one gene. Combined therapies seem to achieve stronger and more selective responses, however, little is known about the interplay of different epigenetic mechanisms and the consequences in the global system of targeting one specific pathway. It is our challenge to understand the cross-talk of different epigenetic mechanisms in order to design, in the most rational way, new anti-cancer drugs. The recent description of loss of acetylation at K16 and trimethylation at K20 as a common hallmark of human cancer [136] raises the prospect of using cancer-specific histone modification 'signatures' for diagnosis and for targeted therapy.

Conflict of interest statement

None declared.

Acknowledgement

Cancer Research UK supports both authors.

References

1. Flaus A, Owen-Hughes T. Mechanisms for ATP-dependent chromatin remodelling: farewell to the tuna-can octamer? *Curr Opin Genet Dev* 2004, **14**(2), 165–173.
2. Kamakaka RT, Biggins S. Histone variants: deviants? *Genes Dev* 2005, **19**(3), 295–310.
3. Scarano MI, Strazzullo M, Matarazzo MR, et al. DNA methylation 40 years later: Its role in human health and disease. *J Cell Physiol* 2005, **204**(1), 21–35.
4. Santos-Rosa H, Schneider R, Bannister AJ, et al. Active genes are tri-methylated at K4 of histone H3. *Nature* 2002, **419**(6905), 407–411.
5. Ng HH, Robert F, Young RA, et al. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localised mark and memory of recent transcriptional activity. *Mol Cell* 2003, **11**(3), 709–719.
6. Grewal SI, Rice JC. Regulation of heterochromatin by histone methylation and small RNAs. *Curr Opin Cell Biol* 2004, **16**(3), 230–238.
7. de la Cruz X, Lois S, Sanchez-Molina S, et al. Do protein motifs read the histone code? *Bioessays* 2005, **27**(2), 164–175.
8. Tagami H, Ray-Gallet D, Almouzni G, et al. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. *Cell* 2004, **116**(1), 51–61.
9. Yang XJ. The diverse superfamily of lysine acetyltransferases and their roles in leukaemia and other diseases. *Nucl Acids Res* 2004, **3**, 959–976.
10. Bannister AJ, Zegerman P, Partridge JF, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. *Nature* 2001, **410**(6824), 120–124.
11. Lachner M, O'Carroll D, Rea S, et al. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. *Nature* 2001, **410**(6824), 116–120.

12. Pray-Grant MG, Daniel JA, Schieltz D, et al. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. *Nature* 2005, **433**(7024), 434–438.
13. Pelletier N, Champagne N, Lim H, et al. Expression, purification, and analysis of MOZ and MORF histone acetyltransferases. *Methods* 2003, **31**(1), 24–32.
14. Iyer NG, Ozdag H, Caldas C. p300/CBP and cancer. *Oncogene* 2004, **23**(24), 4225–4231.
15. Miller CT, Maves L, Kimmel CB. Moz regulates Hox expression and pharyngeal segmental identity in zebrafish. *Development* 2004, **131**(10), 2443–2461.
16. Panagopoulos I, Teixeira MR, Micci F, et al. Acute myeloid leukaemia with inv (8) (p11q13). *Leuk Lymphoma* 2000, **39**(5–6), 651–656.
17. Huntly BJ, Shigematsu H, Deguchi K, et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukaemic stem cells to committed murine hematopoietic progenitors. *Cancer Cell* 2004, **6**(6), 587–596.
18. Murati A, Adelaide J, Popovici C, et al. A further case of acute myelomonocytic leukaemia with inv (8) chromosomal rearrangement and MOZ-NCOA2 gene fusion. *Int J Mol Med* 2003, **12**(4), 423–428.
19. Yao TP, Oh SP, Fuchs M, et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. *Cell* 1998, **93**(3), 361–372.
20. Kung AL, Rebel VI, Bronson RT, et al. Gene dose-dependent control of hematopoiesis and hematologic tumour suppression by CBP. *Genes Dev* 2000, **14**(3), 272–277.
21. Shigeno K, Yoshida H, Pan L, et al. Disease-related potential of mutations in transcriptional cofactors CREB-binding protein and p300 in leukaemias. *Cancer Lett* 2004, **213**(1), 11–20.
22. Gayther SA, Batley SJ, Linger L, et al. Mutations truncating the EP300 acetylase in human cancers. *Nat Genet* 2000, **24**(3), 300–303.
23. Suganuma T, Kawabata M, Ohshima T, et al. Growth suppression of human carcinoma cells by reintroduction of the p300 coactivator. *Proc Natl Acad Sci USA* 2002, **99**(20), 13073–13078.
24. Alarcon JM, Malleret G, Touzani K, et al. Chromatin acetylation, memory, and LTP are impaired in CBP $^{+/-}$ mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. *Neuron* 2004, **42**(6), 947–959.
25. Korzus E, Rosenfeld MG, Mayford M. CBP histone acetyltransferase activity is a critical component of memory consolidation. *Neuron* 2004, **42**(6), 961–972.
26. Blander G, Guarente L. The Sir2 family of protein deacetylases. *Annu Rev Biochem* 2004, **73**, 417–435.
27. Tanner KG, Landry J, Sternglanz R, et al. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. *Proc Natl Acad Sci USA* 2000, **97**(26), 14178–14182.
28. de Ruijter AJ, van Gennip AH, Caron HN, et al. Histone deacetylases (HDACs): characterisation of the classical HDAC family. *Biochem J* 2003, **370**, 737–749.
29. Zhu P, Martin E, Mengwasser J, et al. Induction of HDAC2 expression upon loss of APC in colorectal tumourigenesis. *Cancer Cell* 2004, **5**(5), 455–463.
30. Frolov MV, Dyson NJ. Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. *J Cell Sci* 2004, **117**, 2173–2181.
31. Sengupta S, Shimamoto A, Koshiji M, et al. Tumour suppressor p53 represses transcription of RECQL helicase. *Oncogene* 2005, **24**(10), 1738–1748.
32. Gary JD, Clarke S. RNA and protein interactions modulated by protein arginine methylation. *Prog Nucl Acid Res Mol Biol* 1998, **61**, 65–131.
33. Weiss VH, McBride AE, Soriano MA, et al. The structure and oligomerization of the yeast arginine methyltransferase, Hmt1. *Nat Struct Biol* 2000, **7**(12), 1165–1171.
34. Strahl BD, Briggs SD, Brame CJ, et al. Methylation of histone H4 at arginine 3 occurs *in vivo* and is mediated by the nuclear receptor coactivator PRMT1. *Curr Biol* 2001, **11**(12), 996–1000.
35. Wang H, Huang ZQ, Xia L, et al. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. *Science* 2001, **293**(5531), 853–857.
36. Katsanis N, Yaspo ML, Fisher EM. Identification and mapping of a novel human gene, HRMT1L1, homologous to the rat protein arginine N-methyltransferase 1 (PRMT1) gene. *Mamm Genome* 1997, **8**(7), 526–529.
37. Tang J, Gary JD, Clarke S, et al. PRMT 3, a type I protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localisation, substrate specificity, and regulation. *J Biol Chem* 1998, **273**(27), 16935–16945.
38. Pollack BP, Kotenko SV, He W, et al. The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity. *J Biol Chem* 1999, **274**(44), 31531–31542.
39. Miranda TB, Lowenson JD, Clarke S. A new type of protein methylation activated by tyrophostin A25 and vanadate. *FEBS Lett* 2004, **577**(1–2), 181–186.
40. Lee JH, Cook JR, Yang ZH, et al. PRMT7, a new protein arginine methyltransferase that synthesizes symmetric dimethylarginine. *J Biol Chem* 2005, **280**(5), 3656–3664.
41. Stallcup MR, Chen D, Koh SS, et al. Co-operation between protein-acetylating and protein-methylating co-activators in transcriptional activation. *Biochem Soc Trans* 2000, **28**(4), 415–418.
42. Koh SS, Li H, Lee YH, et al. Synergistic coactivator function by coactivator-associated arginine methyltransferase (CARM) 1 and β -catenin with two different classes of DNA-binding transcriptional activators. *J Biol Chem* 2002, **277**(29), 20535–26031.
43. Daujat S, Bauer UM, Shah V, et al. Crosstalk between CARM1 methylation and CBP acetylation on histone H3. *Curr Biol* 2002, **12**(24), 2090–2097.
44. Covic M, Hassa PO, Saccani S, et al. Arginine methyltransferase CARM1 is a promoter-specific regulator of NF- κ B-dependent gene expression. *EMBO J* 2005, **24**(1), 85–96.
45. An W, Kim J, Roeder RG. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. *Cell* 2004, **117**(6), 735–748.
46. Fabbrizio E, El Messaoudi S, Polanowska J, et al. Negative regulation of transcription by the type II arginine methyltransferase PRMT5. *EMBO Rep* 2002, **3**(7), 641–645.
47. Pal S, Yun R, Datta A, et al. mSin3A/histone deacetylase 2- and PRMT5-containing Brg1 complex is involved in transcriptional repression of the Myc target gene cad. *Mol Cell Biol* 2003, **23**(21), 7475–7487.
48. Hong H, Kao C, Jeng MH, et al. Aberrant expression of CARM1, a transcriptional coactivator of androgen receptor, in the development of prostate carcinoma and androgen-independent status. *Cancer* 2004, **101**(1), 83–89.
49. Pal S, Vishwanath SN, Erdjument-Bromage H, et al. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumour suppressor genes. *Mol Cell Biol* 2004, **24**(21), 9630–9645.
50. Singh V, Miranda TB, Jiang W, et al. DAL-1/4.1B tumour suppressor interacts with protein arginine N-methyltransferase 3 (PRMT3) and inhibits its ability to methylate substrates *in vitro* and *in vivo*. *Oncogene* 2004, **23**(47), 7761–7771.
51. Bernstein BE, Humphrey EL, Erlich RL, et al. Methylation of histone H3 Lys 4 in coding regions of active genes. *Proc Natl Acad Sci USA* 2002, **99**(13), 8695–8700.

52. Santos-Rosa H, Schneider R, Bernstein BE, et al. Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. *Mol Cell* 2003, **12**(5), 1325–1332.
53. Hughes CM, Rozenblatt-Rosen O, Milne TA, et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. *Mol Cell* 2004, **13**(4), 587–597.
54. Li B, Howe L, Anderson S, et al. The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. *J Biol Chem* 2003, **278**(11), 8897–8903.
55. van Leeuwen F, Gafken PR, Gottschling DE. Dot1p modulates silencing in yeast by methylation of the nucleosome core. *Cell* 2002, **109**(6), 745–756.
56. Schneider R, Bannister AJ, Kouzarides T. Unsafe SETs: histone lysine methyltransferases and cancer. *Trends Biochem Sci* 2002, **27**(8), 396–402.
57. Feng Q, Wang H, Ng HH, et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. *Curr Biol* 2002, **12**(12), 1052–1058.
58. Min J, Feng Q, Li Z, et al. Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. *Cell* 2003, **112**(5), 711–723.
59. Rice JC, Nishioka K, Sarma K, et al. Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localisation to mitotic chromosomes. *Genes Dev* 2002, **16**(17), 2225–2230.
60. Julien E, Herr W. A switch in mitotic histone H4 lysine 20 methylation status is linked to M phase defects upon loss of HCF-1. *Mol Cell* 2004, **14**(6), 713–725.
61. Nielsen SJ, Schneider R, Bauer UM, et al. Rb targets histone H3 methylation and HP1 to promoters. *Nature* 2001, **412**(6846), 561–565.
62. Rougeulle C, Chaumeil J, Sarma K, et al. Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. *Mol Cell Biol* 2004, **24**(12), 5475–5484.
63. Boggs BA, Cheung P, Heard E, et al. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. *Nat Genet* 2002, **30**(1), 73–76.
64. Peters AH, Mermoud JE, O'Carroll D, et al. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. *Nat Genet* 2002, **30**(1), 77–80.
65. Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. *Science* 2002, **298**(5595), 1039–1043.
66. Kuzmichev A, Nishioka K, Erdjument-Bromage H, et al. Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of Zeste protein. *Genes Dev* 2002, **16**(22), 2893–2905.
67. Kirmizis A, Bartley SM, Kuzmichev A, et al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. *Genes Dev* 2004, **18**(13), 1592–1605.
68. Dellino GI, Schwartz YB, Farkas G, et al. Polycomb silencing blocks transcription initiation. *Mol Cell* 2004, **13**(6), 887–893.
69. Ringrose L, Ehret H, Paro R. Distinct contributions of histone H3 lysine 9 and 27 methylation to locus-specific stability of polycomb complexes. *Mol Cell* 2004, **16**(4), 641–653.
70. Yang L, Xia L, Wu DY, et al. Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. *Oncogene* 2002, **21**(1), 148–152.
71. Wang H, An W, Cao R, et al. mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. *Mol Cell* 2003, **12**(2), 475–487.
72. Tachibana M, Sugimoto K, Nozaki M, et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. *Genes Dev* 2002, **16**(14), 1779–1791.
73. Tachibana M, Sugimoto K, Fukushima T, et al. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. *J Biol Chem* 2001, **276**(27), 25309–25317.
74. Ringrose L, Paro R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. *Annu Rev Genet* 2004, **35**, 413–443.
75. Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. *Nature* 2002, **419**(6907), 624–629.
76. Kleer CG, Cao Q, Varambally S, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. *Proc Natl Acad Sci USA* 2003, **100**(20), 11606–11611.
77. Bracken AP, Pasini D, Capra M, et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. *EMBO J* 2003, **22**(20), 5323–5335.
78. Ayton PM, Cleary ML. Molecular mechanisms of leukaemogenesis mediated by MLL fusion proteins. *Oncogene* 2001, **20**(40), 5695–5707.
79. Hess JL. Mechanisms of transformation by MLL. *Crit Rev Eukaryot Gene Expr* 2004, **14**(4), 235–254.
80. So CW, Lin M, Ayton PM, et al. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukaemias. *Cancer Cell* 2003, **4**(2), 99–110.
81. Huntsman DG, Chin SF, Muleris M, et al. MLL2, the second human homolog of the *Drosophila* trithorax gene, maps to 19q13.1 and is amplified in solid tumour cell lines. *Oncogene* 1999, **18**(56), 7975–7984.
82. Yokoyama A, Wang Z, Wysocka J, et al. Leukaemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. *Mol Cell Biol* 2004, **24**(13), 5639–5649.
83. Milne TA, Hughes CM, Lloyd R, et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. *Proc Natl Acad Sci USA* 2005, **102**(3), 749–754.
84. Hamamoto R, Furukawa Y, Morita M, et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cell. *Nat Cell Biol* 2004, **6**(8), 731–740.
85. Tan YC, Chow VT. Novel human HALR (MLL3) gene encodes a protein homologous to ALR and to ALL-1 involved in leukaemia, and maps to chromosome 7q36 associated with leukaemia and developmental defects. *Cancer Detect Prev* 2001, **25**(5), 454–469.
86. Bannister AJ, Schneider R, Kouzarides T. Histone methylation: dynamic or static? *Cell* 2002, **109**(7), 801–806.
87. Metivier R, Penot G, Hubner MR, et al. Estrogen receptor- α directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. *Cell* 2003, **115**(6), 751–763.
88. Cuthbert GL, Daujat S, Snowden AW, et al. Histone deimination antagonizes arginine methylation. *Cell* 2004, **118**(5), 545–553.
89. Wang Y, Wysocka J, Sayegh J, et al. Human PAD4 regulates histone arginine methylation levels via demethylimation. *Science* 2004, **306**(5694), 279–283.
90. Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. *Cell* 2004, **119**(7), 941–953.
91. Shi Y, Sawada J, Sui G, et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. *Nature* 2003, **422**(6933), 735–738.
92. You A, Tong JK, Grozinger CM, et al. CoREST is an integral component of the CoREST-human histone deacetylase complex. *Proc Natl Acad Sci USA* 2001, **98**(4), 1454–1458.

93. Nakamura T, Mori T, Tada S, et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. *Mol Cell* 2002, **10**(5), 1119–1128.

94. Sarmiento OF, Digilio LC, Wang Y, et al. Dynamic alterations of specific histone modifications during early murine development. *J Cell Sci* 2004, **117**(19), 4449–4459.

95. Kouskouti A, Talianidis I. Histone modifications defining active genes persist after transcriptional and mitotic inactivation. *EMBO J* 2005, **24**(2), 347–357.

96. Nowak SJ, Corces VG. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. *Trends Genet* 2004, **20**(4), 214–220.

97. Lo WS, Duggan L, Emre NC, et al. Snf1 – a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. *Science* 2001, **293**(5532), 1142–1146.

98. Unal E, Arbel-Eden A, Sattler U, et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. *Mol Cell* 2004, **16**(6), 991–1002.

99. Gill G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? *Genes Dev* 2004, **18**(17), 2046–2059.

100. Briggs SD, Xiao T, Sun ZW, et al. Gene silencing: *trans*-histone regulatory pathway in chromatin. *Nature* 2002, **418**(6897), 498.

101. Dover J, Schneider J, Tawiah-Boateng MA, et al. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. *J Biol Chem* 2002, **277**(32), 28368–28371.

102. Sun ZW, Allis CD. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. *Nature* 2002, **418**(6893), 104–108.

103. Ezhkova E, Tansey WP. Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. *Mol Cell* 2004, **13**(3), 435–442.

104. Henry KW, Wyce A, Lo WS, et al. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. *Genes Dev* 2003, **17**(21), 2648–2663.

105. Daniel JA, Tork MS, Sun ZW, et al. Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. *J Biol Chem* 2004, **279**(3), 1867–1871.

106. Zhang Q, Yao H, Vo N, et al. Acetylation of adenovirus E1A regulates binding of the transcriptional corepressor CtBP. *Proc Natl Acad Sci USA* 2000, **97**(26), 14323–14328.

107. Patel JH, Du Y, Ard PG, et al. The c-MYC oncprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. *Mol Cell Biol* 2004, **24**(24), 10826–10834.

108. Muller S, Miller Jr WH, Dejean A. Trivalent antimonials induce degradation of the PML-RAR oncprotein and reorganisation of the promyelocytic leukaemia nuclear bodies in acute promyelocytic leukaemia NB4 cells. *Blood* 1998, **92**(11), 4308–4316.

109. Chuikov S, Kurash JK, Wilson JR, et al. Regulation of p53 activity through lysine methylation. *Nature* 2004, **432**(7015), 353–360.

110. Fischle W, Wang Y, Allis CD. Histone and chromatin cross-talk. *Curr Opin Cell Biol* 2003, **15**(2), 172–183.

111. Cheung P, Tanner KG, Cheung WL, et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. *Mol Cell* 2000, **5**(6), 905–915.

112. Rea S, Eisenhaber F, O'Carroll D, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. *Nature* 2000, **406**(6796), 593–599.

113. Bird A. DNA methylation patterns and epigenetic memory. *Genes Dev* 2002, **16**(1), 6–21.

114. Bird AP, Wolfe AP. Methylation-induced repression – belts, braces, and chromatin. *Cell* 1999, **99**(5), 451–454.

115. Fuks F, Hurd PJ, Deplus R, et al. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. *Nucl Acids Res* 2003, **31**(9), 2305–2312.

116. Mutskov V, Felsenfeld G. Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9. *EMBO J* 2004, **23**(1), 138–149.

117. Tamaru H, Selker EU. A histone H3 methyltransferase controls DNA methylation in *Neurospora crassa*. *Nature* 2001, **414**(6861), 277–283.

118. Tamaru H, Zhang X, McMillen D, et al. Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in *Neurospora crassa*. *Nat Genet* 2003, **34**(1), 75–79.

119. Jackson JP, Lindroth AM, Cao X, et al. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. *Nature* 2002, **416**(6880), 556–560.

120. Tong JK, Hassig CA, Schnitzler GR, et al. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. *Nature* 1998, **395**(6705), 917–921.

121. Rozenblatt-Rosen O, Rozovskaia T, Burakov D, et al. The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INII and SNR1 proteins, components of the SWI/SNF complex. *Proc Natl Acad Sci USA* 1998, **95**(8), 4152–4157.

122. Santos-Rosa H, Schneider R, Bernstein BE, et al. Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. *Mol Cell* 2003, **12**(5), 1325–1332.

123. Korber P, Horz W. SWRred not shaken; mixing the histones. *Cell* 2004, **117**(1), 5–7.

124. Matzke MA, Birchler JA. RNAi-mediated pathways in the nucleus. *Nat Rev Genet* 2005, **6**(1), 24–35.

125. Pelizzier T, Thalmeir S, Kempe D, et al. Heavy de novo methylation at symmetrical and non-symmetrical sites is a hallmark of RNA-directed DNA methylation. *Nucl Acids Res* 1999, **27**(7), 1625–1634.

126. Ramsahoye BH, Biniszewicz D, Lyko F, et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. *Proc Natl Acad Sci USA* 2000, **97**(10), 5237–5242.

127. Fukagawa T, Nogami M, Yoshikawa M, et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. *Nat Cell Biol* 2004, **6**(8), 784–791.

128. Shroff R, Arbel-Eden A, Pilch D, et al. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. *Curr Biol* 2004, **14**(19), 1703–1711.

129. Huyen Y, Zgheib O, Dittullio Jr RA, et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. *Nature* 2004, **432**(7015), 406–411.

130. Sanders SL, Portoso M, Mata J, et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. *Cell* 2004, **119**(5), 603–614.

131. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. *Nat Rev Genet* 2002, **3**(6), 415–428.

132. Ehrlich M. DNA methylation in cancer: too much, but also too little. *Oncogene* 2002, **21**(35), 5400–5413.

133. Esteller M. DNA methylation and cancer therapy: new developments and expectations. *Curr Opin Oncol* 2005, **17**(1), 55–60.

134. La Thangue NB. Histone deacetylase inhibitors and cancer therapy. *J Chemother* 2004, **16**(4), 64–67.

135. Friedrich I, Shir A, Klein S, et al. RNA molecules as anti-cancer agents. *Semin Cancer Biol* 2004, **14**(4), 223–230.

136. Fraga MF, Ballestar E, Villar-Garea A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. *Nat Genet* 2005, **37**(4), 391–400.

137. Ozdag H, Batley SJ, Forsti A, et al. Mutation analysis of CBP and PCAF reveals rare inactivating mutations in cancer cell lines but not in primary tumours. *Br J Cancer* 2002, **87**(10), 1162–1165.

138. Koshiishi N, Chong JM, Fukasawa T, et al. p300 gene alterations in intestinal and diffuse types of gastric carcinoma. *Gastric Cancer* 2004, **7**(2), 85–90.

139. Ionov Y, Matsui S, Cowell JK. A role for p300/CREB binding protein genes in promoting cancer progression in colon cancer cell lines with microsatellite instability. *Proc Natl Acad Sci USA* 2004, **101**(5), 1273–1278.

140. Muraoka M, Konishi M, Kikuchi-Yanoshita R, et al. p300 gene alterations in colorectal and gastric carcinomas. *Oncogene* 1996, **12**(7), 1565–1569.

141. Kitabayashi I, Aikawa Y, Yokoyama A, et al. Fusion of MOZ and p300 histone acetyltransferases in acute monocytic leukemia with a t(8;22)(p11;q13) chromosome translocation. *Leukemia* 2001, **15**(1), 89–94.

142. Pebusque MJ, Chaffanet M, Popovici C, et al. FGFR1 and MOZ, two key genes involved in malignant hemopathies linked to rearrangements within the chromosomal region 8p11-12. *Bull Cancer* 2000, **87**(12), 887–894, Review.

143. Chaffanet M, Gressin L, Preuchomme C, et al. MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). *Genes Chromosomes Cancer* 2000, **28**(2), 138–144.

144. Ida K, Taki T, Bessho F, et al. Detection of chimeric mRNAs by reverse transcriptase-polymerase chain reaction for diagnosis and monitoring of acute leukemias with 11q23 abnormalities. *Med Pediatr Oncol* 1997, **28**(5), 325–332.

145. Ohshima T, Suganuma T, Ikeda M. A novel mutation lacking the bromodomain of the transcriptional coactivator p300 in the SiHa cervical carcinoma cell line. *Biochem Biophys Res Commun* 2001, **281**(2), 569–575.

146. Roelfsema JH, White SJ, Ariyurek Y, et al. Genetic heterogeneity in Rubinstein-Taybi syndrome: mutations in both the CBP and EP300 genes cause disease. *Am J Hum Genet* 2005, **76**(4), 572–580.

147. Kishimoto M, Kohno T, Okudela K, et al. Mutations and deletions of the CBP gene in human lung cancer. *Clin Cancer Res* 2005, **11**(2 Pt 1), 512–519.

148. Murati A, Adelaide J, Mozziconacci MJ, et al. Variant MYST4-CBP gene fusion in a t(10;16) acute myeloid leukaemia. *Br J Haematol* 2004, **125**(5), 601–604.

149. Rozman M, Camos M, Colomer D, et al. Type I MOZ/CBP (MYST3/CREBBP) is the most common chimeric transcript in acute myeloid leukemia with t(8;16)(p11;p13) translocation. *Genes Chromosomes Cancer* 2004, **40**(2), 140–145.

150. Schmidt HH, Strehl S, Thaler D, et al. RT-PCR and FISH analysis of acute myeloid leukemia with t(8;16)(p11;p13) and chimeric MOZ and CBP transcripts: breakpoint cluster region and clinical implications. *Leukemia* 2004, **18**(6), 1115–1121.

151. Panagopoulos I, Isaksson M, Lindvall C, et al. Genomic characterization of MOZ/CBP and CBP/MOZ chimeras in acute myeloid leukemia suggests the involvement of a damage-repair mechanism in the origin of the t(8;16)(p11;p13). *Genes Chromosomes Cancer* 2003, **36**(1), 90–98.

152. Chaffanet M, Mozziconacci MJ, Fernandez F, et al. A case of inv(8)(p11q24) associated with acute myeloid leukemia involves the MOZ and CBP genes in a masked t(8;16). *Genes Chromosomes Cancer* 1999, **26**(2), 161–165.

153. Giles RH, Dauwerse JG, Higgins C, et al. Detection of CBP rearrangements in acute myelogenous leukemia with t(8;16). *Leukemia* 1997, **11**(12), 2087–2096.

154. Borrow J, Stanton VP Jr, Andresen JM, et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. *Nat Genet* 1996, **14**(1), 33–41.

155. Bernasconi P, Orlandi E, Cavigliano P, et al. Translocation (8;16) in a patient with acute myelomonocytic leukemia, occurring after treatment with fludarabine for a low-grade non-Hodgkin's lymphoma. *Haematologica* 2000, **85**(10), 1087–1091.

156. Kojima K, Kaneda K, Yoshida C, et al. A novel fusion variant of the MORF and CBP genes detected in therapy-related myelodysplastic syndrome with t(10;16)(q22;p13). *Br J Haematol* 2003, **120**(2), 271–273.

157. Panagopoulos I, Fioretos T, Isaksson M, et al. Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). *Hum Mol Genet* 2001, **10**(4), 395–404.

158. Vizmanos JL, Larrayoz MJ, Lahortiga I, et al. t(10;16)(q22;p13) and MORF-CREBBP fusion is a recurrent event in acute myeloid leukemia. *Genes Chromosomes Cancer* 2003, **36**(4), 402–405.

159. So CK, Nie Y, Song Y, et al. Loss of heterozygosity and internal tandem duplication mutations of the CBP gene are frequent events in human esophageal squamous cell carcinoma. *Clin Cancer Res* 2004, **10**(1 Pt 1), 19–27.

160. Sugita K, Taki T, Hayashi Y, et al. MLL-CBP fusion transcript in a therapy-related acute myeloid leukemia with the t(11;16)(q23;p13) which developed in an acute lymphoblastic leukemia patient with Fanconi anemia. *Genes Chromosomes Cancer* 2000, **27**(3), 264–269.

161. Satake N, Ishida Y, Otoh Y, et al. Novel MLL-CBP fusion transcript in therapy-related chronic myelomonocytic leukemia with a t(11;16)(q23;p13) chromosome translocation. *Genes Chromosomes Cancer* 1997, **20**(1), 60–63.

162. Sobulo OM, Borrow J, Tomek R, et al. MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). *Proc Natl Acad Sci USA* 1997, **94**(16), 8732–8737.

163. Rowley JD, Reshmi S, Sobulo O, et al. All patients with the T(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. *Blood* 1997, **90**(2), 535–541.

164. Coupry I, Monnet L, Attia AA, et al. Analysis of CBP (CREBBP) gene deletions in Rubinstein-Taybi syndrome patients using real-time quantitative PCR. *Hum Mutat* 2004, **23**(3), 278–284.

165. Kalkhoven E, Roelfsema JH, Teunissen H, et al. Loss of CBP acetyltransferase activity by PHD finger mutations in Rubinstein-Taybi syndrome. *Hum Mol Genet* 2003, **12**(4), 441–450.

166. Deguchi K, Ayton PM, Carapeti M, et al. MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. *Cancer Cell* 2003, **3**(3), 259–271.

167. Liang J, Prouty L, Williams BJ, et al. Acute mixed lineage leukemia with an inv(8)(p11q13) resulting in fusion of the genes for MOZ and TIF2. *Blood* 1998, **92**(6), 2118–2122.

168. Carapeti M, Aguiar RC, Goldman JM, et al. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. *Blood* 1998, **91**(9), 3127–3133.

169. Imamura T, Kakazu N, Hibi S, et al. Rearrangement of the MOZ gene in pediatric therapy-related myelodysplastic syndrome with a novel chromosomal translocation t(2;8)(p23;p11). *Genes Chromosomes Cancer* 2003, **36**(4), 413–419.

170. Moore SD, Herrick SR, Ince TA, et al. Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. *Cancer Res* 2004, **64**(16), 5570–5577.

171. Wachtel M, Dettling M, Koscielniak E, et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. *Cancer Res* 2004, **64**(16), 5539–5545.

172. Halkidou K, Gaughan L, Cook S, et al. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. *Prostate* 2004, **59**(2), 177–189.

173. Choi JH, Kwon HJ, Yoon BI, et al. Expression profile of histone deacetylase 1 in gastric cancer tissues. *Jpn J Cancer Res* 2001, **92**(12), 1300–1304.

174. Marcucci G, Mrozek K, Bloomfield CD. Molecular heterogeneity and prognostic biomarkers in adults with acute myeloid leukemia and normal cytogenetics. *Curr Opin Hematol* 2005, **12**(1), 68–75, Review.

175. Sambani C, La Starza R, Roumier C, et al. Partial duplication of the MLL oncogene in patients with aggressive acute myeloid leukemia. *Haematologica* 2004, **89**(4), 403–407.

176. Vey N, Mozziconacci MJ, Groulet-Martinec A, et al. Identification of new classes among acute myelogenous leukaemias with normal karyotype using gene expression profiling. *Oncogene* 2004, **23**(58), 9381–9391.

177. Quentmeier H, Reinhardt J, Zaborski M, et al. MLL partial tandem duplications in acute leukemia cell lines. *Leukemia* 2003, **17**(5), 980–981.

178. Dohner K, Tobis K, Ulrich R, et al. Prognostic significance of partial tandem duplications of the MLL gene in adult patients 16 to 60 years old with acute myeloid leukemia and normal cytogenetics: a study of the Acute Myeloid Leukemia Study Group Ulm. *J Clin Oncol* 2002, **20**(15), 3254–3261.

179. Christiansen DH, Pedersen-Bjergaard J. Internal tandem duplications of the FLT3 and MLL genes are mainly observed in atypical cases of therapy-related acute myeloid leukemia with a normal karyotype and are unrelated to type of previous therapy. *Leukemia* 2001, **15**(12), 1848–1851.

180. Ariyama Y, Fukuda Y, Okuno Y, et al. Amplification on double-minute chromosomes and partial-tandem duplication of the MLL gene in leukemic cells of a patient with acute myelogenous leukaemia. *Genes Chromosomes Cancer* 1998, **23**(3), 267–272.

181. Caligiuri MA, Strout MP, Lawrence D, et al. Rearrangement of ALL1 (MLL) in acute myeloid leukemia with normal cytogenetics. *Cancer Res* 1998, **58**(1), 55–59.

182. Kwong YL. Partial duplication of the MLL gene in acute myelogenous leukemia without karyotypic aberration. *Cancer Genet Cytogenet* 1997, **97**(1), 20–24.

183. Yu M, Honoki K, Andersen J, et al. MLL tandem duplication and multiple splicing in adult acute myeloid leukemia with normal karyotype. *Leukemia* 1996, **10**(5), 774–780.

184. Whitman SP, Strout MP, Marcucci G, et al. The partial nontandem duplication of the MLL (ALL1) gene is a novel rearrangement that generates three distinct fusion transcripts in B-cell acute lymphoblastic leukemia. *Cancer Res* 2001, **61**(1), 59–63.

185. Zatkova A, Ullmann R, Rouillard JM, et al. Distinct sequences on 11q13.5 and 11q23–24 are frequently coamplified with MLL in complexly organized 11q amplicons in AML/MDS patients. *Genes Chromosomes Cancer* 2004, **39**(4), 263–276.

186. Poppe B, Vandesompele J, Schoch C, et al. Expression analyses identify MLL as a prominent target of 11q23 amplification and support an etiologic role for MLL gain of function in myeloid malignancies. *Blood* 2004, **103**(1), 229–235.

187. Brezinova J, Zemanova Z, Cermak J, et al. Variations in MLL amplification in a patient with acute myeloid leukaemia. *Leuk Lymphoma* 2002, **43**(10), 2031–2035.

188. Dolan M, McGlennen RC, Hirsch B. MLL amplification in myeloid malignancies: clinical, molecular, and cytogenetic findings. *Cancer Genet Cytogenet* 2002, **134**(2), 93–101.

189. Mrozek K, Heinonen K, Theil KS, et al. Spectral karyotyping in patients with acute myeloid leukemia and a complex karyotype shows hidden aberrations, including recurrent overrepresentation of 21q, 11q, and 22q. *Genes Chromosomes Cancer* 2002, **34**(2), 137–153.

190. Reddy KS, Parsons L, Mak L, et al. Segmental amplification of 11q23 region identified by fluorescence in situ hybridization in four patients with myeloid disorders: a review. *Cancer Genet Cytogenet* 2001, **126**(2), 139–146, Review.

191. Andersen MK, Christiansen DH, Kirchhoff M, et al. Duplication or amplification of chromosome band 11q23, including the unarranged MLL gene, is a recurrent abnormality in therapy-related MDS and AML, and is closely related to mutation of the TP53 gene and to previous therapy with alkylating agents. *Genes Chromosomes Cancer* 2001, **31**(1), 33–41.

192. Cuthbert G, Thompson K, McCullough S, et al. MLL amplification in acute leukaemia: a United Kingdom Cancer Cytogenetics Group (UKCCG) study. *Leukemia* 2000, **14**(11), 1885–1891.

193. Park JP, Ladd SL, Ely P, et al. Amplification of the MLL region in acute myeloid leukaemia. *Cancer Genet Cytogenet* 2000, **121**(2), 198–205.

194. Michaux L, Wlodarska I, Stul M, et al. MLL amplification in myeloid leukemias: A study of 14 cases with multiple copies of 11q23. *Genes Chromosomes Cancer* 2000, **29**(1), 40–47.

195. Streubel B, Valent P, Jager U, et al. Amplification of the MLL gene on double minutes, a homogeneously staining region, and ring chromosomes in five patients with acute myeloid leukemia or myelodysplastic syndrome. *Genes Chromosomes Cancer* 2000, **27**(4), 380–386.

196. Avet-Loiseau H, Godon C, Li JY, Daviet A, et al. Amplification of the 11q23 region in acute myeloid leukemia. *Genes Chromosomes Cancer* 1999, **26**(2), 166–170.

197. Martinez-Ramirez A, Urioste M, Melchor L, et al. Analysis of myelodysplastic syndromes with complex karyotypes by high-resolution comparative genomic hybridization and subtelomeric CGH array. *Genes Chromosomes Cancer* 2005, **42**(3), 287–298.

198. Calabrese G, Fantasia D, Morizio E, et al. Chromosome 11 rearrangements and specific MLL amplification revealed by spectral karyotyping in a patient with refractory anaemia with excess of blasts (RAEB). *Br J Haematol* 2003, **122**(5), 760–763.

199. Espinet B, Florena L, Salido M, et al. MLL intrachromosomal amplification in a pre-B acute lymphoblastic leukemia. *Haematologica* 2003, **88**(2), EIM03.

200. Kwong YL, Wong KF. Acute myeloid leukemia with trisomy 11: a molecular cytogenetic study. *Cancer Genet Cytogenet* 1997, **99**(1), 19–23.

201. Caligiuri MA, Strout MP, Oberkircher AR, et al. The partial tandem duplication of ALL1 in acute myeloid leukemia with normal cytogenetics or trisomy 11 is restricted to one chromosome. *Proc Natl Acad Sci USA* 1997, **94**(8), 3899–3902.

202. Yamamoto K, Hamaguchi H, Nagata K, et al. Tandem duplication of the MLL gene in myelodysplastic syndrome derived overt leukemia with trisomy 11. *Am J Hematol* 1997, **55**(1), 41–45.

203. Barouk-Simonet E, Soenen-Cornu V, Roumier C, et al. Role of multiplex FISH in identifying chromosome involvement in myelodysplastic syndromes and acute myeloid leukemias with complex karyotypes: a report on 28 cases. *Cancer Genet Cytogenet* 2005, **157**(2), 118–126.

204. Martinez-Ramirez A, Urioste M, Alvarez S, et al. Cytogenetic profile of myelodysplastic syndromes with complex karyotypes: an analysis using spectral karyotyping. *Cancer Genet Cytogenet* 2004, **153**(1), 39–47.

205. Morerio C, Rapella A, Rosanda C, et al. MLL-MLLT10 fusion in acute monoblastic leukemia: variant complex rearrangements and 11q proximal breakpoint heterogeneity. *Cancer Genet Cytogenet* 2004, **152**(2), 108–112., Review.

206. Shivakumara S, Mathew S, Dalton J, et al. A complex karyotype involving chromosomes 3, 6, 11, 12, and 22 in adult acute lymphoblastic leukemia. *Leuk Lymphoma* 2002, **43**(8), 1673–1677.

207. Chervinsky DS, Sait SN, Nowak NJ, et al. Complex MLL rearrangement in a patient with T-cell acute lymphoblastic leukemia. *Genes Chromosomes Cancer* 1995, **14**(1), 76–84.

208. Cigudosa JC, Odero MD, Calasanz MJ, et al. De novo erythroleukemia chromosome features include multiple rearrangements, with special involvement of chromosomes 11 and 19. *Genes Chromosomes Cancer* 2003, **36**(4), 406–412.

209. Moore SD, Strehl S, Dal Cin P. Acute myelocytic leukemia with t(11;17)(q23;q21) involves a fusion of MLL and AF17. *Cancer Genet Cytogenet* 2005, **157**(1), 87–89.

210. Maroc N, Morel A, Beillard E, et al. A diagnostic biochip for the comprehensive analysis of MLL translocations in acute leukemia. *Leukemia* 2004, **18**(9), 1522–1530.

211. Taki T, Ohnishi H, Shinohara K, et al. AF17q25, a putative septin family gene, fuses the MLL gene in acute myeloid leukemia with t(11;17)(q23;q25). *Cancer Res* 1999, **59**(17), 4261–4265.

212. Prasad R, Leshkowitz D, Gu Y, et al. Leucine-zipper dimerization motif encoded by the AF17 gene fused to ALL-1 (MLL) in acute leukemia. *Proc Natl Acad Sci USA* 1994, **91**(17), 8107–8111.

213. Strehl S, Borkhardt A, Slany R, et al. The human LASP1 gene is fused to MLL in an acute myeloid leukemia with t(11;17)(q23;q21). *Oncogene* 2003, **22**(1), 157–160.

214. Hiwatari M, Taki T, Taketani T, et al. Fusion of an AF4-related gene, LAF4, to MLL in childhood acute lymphoblastic leukemia with t(2;11)(q11;q23). *Oncogene* 2003, **22**(18), 2851–2855.

215. Van Limbergen H, Poppe B, Janssens A, et al. Molecular cytogenetic analysis of 10; 11 rearrangements in acute myeloid leukemia. *Leukemia* 2002, **16**(3), 344–351., Review.

216. Gore L, Ess J, Bitter MA, et al. Protean clinical manifestations in children with leukemias containing MLL-AF10 fusion. *Leukemia* 2000, **14**(12), 2070–2075.

217. Tirado CA, Lager J, Rosoff PM, Golembiski-Ruiz V, et al. A case of infantile acute lymphoblastic leukemia presenting with rearrangement of MLL at 11q23 and apparent insertion or translocation at 10p12. *Cancer Genet Cytogenet* 2004, **154**(1), 57–59.

218. Roll P, Zattara-Cannoni H, Bustos-Bernard MC, et al. Molecular and fluorescence *in situ* hybridization analysis of a 10; 11 rearrangement in a case of infant acute monocytic leukemia. *Cancer Genet Cytogenet* 2002, **135**(2), 187–191.

219. Fu JF, Liang DC, Yang CP, et al. Molecular analysis of t(X;11)(q24;q23) in an infant with AML-M4. *Genes Chromosomes Cancer* 2003, **38**(3), 253–259.

220. Ono R, Taki T, Taketani T, et al. SEPTIN6, a human homologue to mouse Septin6, is fused to MLL in infant acute myeloid leukemia with complex chromosomal abnormalities involving 11q23 and Xq24. *Cancer Res* 2002, **62**(2), 333–337.

221. Fuchs U, Rehkamp G, Haas OA, et al. The human formin-binding protein 17 (FBP17) interacts with sorting nexin, SNX2, and is an MLL-fusion partner in acute myelogenous leukemia. *Proc Natl Acad Sci USA* 2001, **98**(15), 8756–8761., Epub 2001 Jul 3.

222. Kuwada N, Kimura F, Matsunura T, et al. t(11;14)(q23;q24) generates an MLL-human gephyrin fusion gene along with a de facto truncated MLL in acute monoblastic leukemia. *Cancer Res* 2001, **61**(6), 2665–2669.

223. Hayette S, Tigaud I, Vanier A, et al. AF15q14, a novel partner gene fused to the MLL gene in an acute myeloid leukaemia with a t(11;15)(q23;q14). *Oncogene* 2000, **19**(38), 4446–4450.

224. Metzler M, Strissel PL, Strick R, et al. Emergence of translocation t(9;11)-positive leukemia during treatment of childhood acute lymphoblastic leukemia. *Genes Chromosomes Cancer* 2004, **41**(3), 291–296.

225. Shago M, Bouman D, Kamel-Reid S, et al. Cryptic insertion of MLL gene into 9p22 leads to MLL-MLLT3 (AF9) fusion in a case of acute myelogenous leukemia. *Genes Chromosomes Cancer* 2004, **40**(4), 349–354.

226. Anguita E, Barrio CG, Gonzalez FA, et al. Association of t(9;11)-MLL AF9 and trisomy 8 in an AML-M5 preceded by pancytopenia. *Cancer Genet Cytogenet* 2000, **120**(2), 144–147.

227. Matsuo Y, MacLeod RA, Uphoff CC, et al. Two acute monocytic leukemia (AML-M5a) cell lines (MOLM-13 and MOLM-14) with interclonal phenotypic heterogeneity showing MLL-AF9 fusion resulting from an occult chromosome insertion, ins(11;9)(q23;p22p23). *Leukemia* 1997, **11**(9), 1469–1477.

228. Super HG, Strissel PL, Sobulo OM, et al. Identification of complex genomic breakpoint junctions in the t(9; 11) MLL-AF9 fusion gene in acute leukemia. *Genes Chromosomes Cancer* 1997, **20**(2), 185–195.

229. Tsao L, Draoua HY, Osunkwo I, et al. Mature B-cell acute lymphoblastic leukemia with t(9;11) translocation: a distinct subset of B-cell acute lymphoblastic leukemia. *Mod Pathol* 2004, **17**(7), 832–839.

230. Hashii Y, Kirn JY, Sawada A, et al. A novel partner gene CIP29 containing a SAP domain with MLL identified in infantile myelomonocytic leukemia. *Leukemia* 2004, **18**(9), 1546–1548.

231. von Bergh AR, Wijers PM, Groot AJ, et al. Identification of a novel RAS GTPase-activating protein (RASGAP) gene at 9q34 as an MLL fusion partner in a patient with de novo acute myeloid leukemia. *Genes Chromosomes Cancer* 2004, **39**(4), 324–334.

232. Cin PD, Sherman L, Marzelli M, et al. A new case of t(11;17)(q23;q21) with MLL rearrangement. *Cancer Genet Cytogenet* 2004, **148**(2), 178–179.

233. Deveney R, Chervinsky DS, Jani-Sait SN, et al. Insertion of MLL sequences into chromosome band 5q31 results in an MLL-AF5Q31 fusion and is a rare but recurrent abnormality associated with infant leukemia. *Genes Chromosomes Cancer* 2003, **37**(3), 326–331.

234. Corapcioglu F, Olgun N, Sarialioglu F, et al. MLL-AF4 gene rearrangement in a child with Epstein-Barr virus-related post-transplant B-cell lymphoma. *J Pediatr Hematol Oncol* 2003, **25**(9), 740–742.

235. De Zen L, Bicciato S, te Kronnie G, et al. Computational analysis of flow-cytometry antigen expression profiles in childhood acute lymphoblastic leukemia: an MLL/AF4 identification. *Leukemia* 2003, **17**(8), 1557–1565.

236. Elia L, Mancini M, Moleti L, et al. A multiplex reverse transcriptase-polymerase chain reaction strategy for the diagnostic molecular screening of chimeric genes: a clinical evaluation on 170 patients with acute lymphoblastic leukemia. *Haematologica* 2003, **88**(3), 275–279.

237. Pane F, Intrieri M, Izzo B, et al. A novel MLL/AF4 fusion gene lacking the AF4 transactivating domain in infant acute lymphoblastic leukemia. *Blood* 2002, **100**(12), 4247–4248.

238. Chami I, Perot C, Portnoi MF, et al. Molecular analysis of an unusual rearrangement between chromosomes 4 and 11 in adult pre-B-cell acute lymphoblastic leukemia. *Cancer Genet Cytogenet* 2002, **133**(2), 129–133.

239. Konig M, Reichel M, Marschalek R, et al. A highly specific and sensitive fluorescence *in situ* hybridization assay for the detection of t(4;11)(q21;q23) and concurrent submicroscopic deletions in acute leukaemias. *Br J Haematol* 2002, **116**(4), 758–764.

240. Bertrand FE, Vogtenhuber C, Shah N, et al. Pro-B-cell to pre-B-cell development in B-lineage acute lymphoblastic leukemia expressing the MLL/AF4 fusion protein. *Blood* 2001, **98**(12), 3398–3405.

241. von Bergh A, Gargallo P, De Prijck B, et al. Cryptic t(4;11) encoding MLL-AF4 due to insertion of 5' MLL sequences in chromosome 4. *Leukemia* 2001, **15**(4), 595–600.

242. Blutters-Sawatzki R, Borkhardt A, Grathwohl J, et al. Secondary acute myeloid leukemia with translocation (4;11) and MLL/AF4 rearrangement in a 15-year-old boy treated for common acute lymphoblastic leukemia 11 years earlier. *Ann Hematol* 1995, **70**(1), 31–35.

243. Domer PH, Fakharzadeh SS, Chen CS, et al. Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL-AF4 fusion product. *Proc Natl Acad Sci USA* 1993, **90**(16), 7884–7888.

244. Rubnitz JE, Camitta BM, Mahmoud H, et al. Childhood acute lymphoblastic leukemia with the MLL-ENL fusion and t(11;19)(q23;p13.3) translocation. *J Clin Oncol* 1999, **17**(1), 191–196.

245. Horstmann M, Argyriou-Tirita A, Borkhardt A, et al. MLL/ENL fusion in congenital acute lymphoblastic leukemia with a unique t(11;18;19). *Cancer Genet Cytogenet* 1996, **88**(2), 103–109.

246. Chervinsky DS, Sait SN, Nowak NJ, et al. Complex MLL rearrangement in a patient with T-cell acute lymphoblastic leukemia. *Genes Chromosomes Cancer* 1995, **14**(1), 76–84.

247. Yamamoto K, Nagata K, Tsurukubo Y, et al. Translation (8;12)(q13;p13) during disease progression in acute myelomonocytic leukemia with t(11;19)(q23;p13.1). *Cancer Genet Cytogenet* 2002, **137**(1), 64–67.

248. So CW, Caldas C, Liu MM, et al. EEN encodes for a member of a new family of proteins containing an Src homology 3 domain and is the third gene located on chromosome 19p13 that fuses to MLL in human leukemia. *Proc Natl Acad Sci U S A* 1997, **94**(6), 2563–2568.

249. Panagopoulos I, Kitagawa A, Isaksson M, et al. MLL/GRAF fusion in an infant acute monocytic leukemia (AML M5b) with a cytogenetically cryptic ins(5;11)(q31;q23q23). *Genes Chromosomes Cancer* 2004, **41**(4), 400–404.

250. Daheron L, Veinstein A, Brizard F, et al. LPP gene is fused to MLL in a secondary acute leukemia with a t(3;11)(q28;q23). *Genes Chromosomes Cancer* 2001, **31**(4), 382–389.

251. Lorsbach RB, Moore J, Mathew S, et al. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). *Leukemia* 2003, **17**(3), 637–641.

252. Suzuki S, Chiba K, Toyoshima N, et al. Chronic eosinophilic leukemia with t(6;11)(q27;q23) translocation. *Ann Hematol* 2001, **80**(9), 553–556.

253. Taki T, Hayashi Y, Taniwaki M, et al. Fusion of the MLL gene with two different genes, AF-6 and AF-5alpha, by a complex translocation involving chromosomes 5, 6, 8 and 11 in infant leukaemia. *Oncogene* 1996, **13**(10), 2121–2130.

254. Hayakawa A, Matsuda Y, Daibata M, et al. Genomic organization, tissue expression, and cellular localization of AF3p21, a fusion partner of MLL in therapy-related leukemia. *Genes Chromosomes Cancer* 2001, **30**(4), 364–374.

255. Sano K, Hayakawa A, Piao JH, et al. Novel SH3 protein encoded by the AF3p21 gene is fused to the mixed lineage leukemia protein in a therapy-related leukemia with t(3;11)(p21;q23). *Blood* 2000, **95**(3), 1066–1068.

256. Ikeda T, Ikeda K, Sasaki K, et al. The inv(11)(p15q22) chromosome translocation of therapy-related myelodysplasia with NUP98-DDX10 and DDX10-NUP98 fusion transcripts. *Int J Hematol* 1999, **69**(3), 160–164.

257. Megonigal MD, Cheung NK, Rappaport EF, et al. Detection of leukemia-associated MLL-GAS7 translocation early during chemotherapy with DNA topoisomerase II inhibitors. *Proc Natl Acad Sci USA* 2000, **97**(6), 2814–2819.

258. Borkhardt A, Repp R, Haas OA, et al. Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23). *Oncogene* 1997, **14**(2), 195–202.

259. Meyer C, Schneider B, Reichel M, et al. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. *Proc Natl Acad Sci USA* 2005, **102**(2), 449–454.

260. Dohner K, Brown J, Hehmann U, et al. Molecular cytogenetic characterization of a critical region in bands 7q35–q36 commonly deleted in malignant myeloid disorders. *Blood* 1998, **92**(11), 4031–4035.

261. van Kemenade FJ, Raaphorst FM, Blokzijl T, et al. Coexpression of BMI-1 and EZH2 polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma. *Blood* 2001, **97**(12), 3896–3901.

262. Dukers DF, van Galen JC, Giroth C, et al. Unique polycomb gene expression pattern in Hodgkin's lymphoma and Hodgkin's lymphoma-derived cell lines. *Am J Pathol* 2004, **164**(3), 873–881.

263. Raaphorst FM, Meijer CJ, Fieret E, et al. Poorly differentiated breast carcinoma is associated with increased expression of the human polycomb group EZH2 gene. *Neoplasia* 2003, **5**(6), 481–488.