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Abstract

In all organisms, cell proliferation is orchestrated by coordinated patterns of gene expression. Transcription results from the
activity of the RNA polymerase machinery and depends on the ability of transcription activators and repressors to access chromatin
at specific promoters. During the last decades, increasing evidence supports aberrant transcription regulation as contributing to the
development of human cancers. In fact, transcription regulatory proteins are often identified in oncogenic chromosomal rearrange-
ments and are overexpressed in a variety of malignancies. Most transcription regulators are large proteins, containing multiple struc-
tural and functional domains some with enzymatic activity. These activities modify the structure of the chromatin, occluding certain
DNA regions and exposing others for interaction with the transcription machinery. Thus, chromatin modifiers represent an addi-
tional level of transcription regulation. In this review we focus on several families of transcription activators and repressors that
catalyse histone post-translational modifications (acetylation, methylation, phosphorylation, ubiquitination and SUMOylation);

and how these enzymatic activities might alter the correct cell proliferation program, leading to cancer.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In all eukaryotes, DNA is compacted into the nucleus
as chromatin. The traditional view is that chromatin is
required for packing the ~1 m length of the human gen-
ome DNA into the 10 um diameter average size human
nucleus. However, our view on the function of chroma-
tin has become broader and more dynamic than just that
of a DNA-packaging device. Chromatin represents an
additional level of regulation for all DNA metabolic
processes (replication, repair and gene expression) by
working as a platform where biological signals integrate
and molecular responses take place.

The structural subunit of chromatin is the nucleo-
some, which consists of 146 bp of DNA wrapped around
an octamer of very basic proteins called histones. Each
nucleosome core consists of two copies of each of the his-
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tones: H2A, H2B, H3 and H4 (Fig. 1). These evolution-
arily conserved proteins have a globular C-terminal
domain critical to nucleosome formation and a flexible
N-terminal tail that protrudes from the nucleosome core.
Nucleosomes assemble on an 11 nm filament array
known as beads on a string, which undergoes a series
of wrapping and compacting events as cells progress
from interphase to metaphase, culminating with the to-
tally condensed chromosome during metaphase.
Besides this generic organisation, local chromosomal
domains present different levels of structure: heterochro-
matin was originally identified cytogenetically as the
portion of the genome that remains condensed after
the transition from metaphase to interphase. These re-
gions correspond to telomeres and pericentric chromo-
somal areas and generally localise attached to the
perinuclear compartment. Heterochromatic areas tend
to be rich in repetitive sequences, low in gene content
(although some genes are present), transcriptionally si-
lent or showing a variegating phenotype and typically
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Fig. 1. Post-translational modifications on the histone tails. Modifications recently identified by mass spectroscopic techniques but unconfirmed (by
mutational analysis and/or western blot with specific antibodies) are not shown. Note that Lysine 9, Lysine 14, Lysine 23 and Lysine 27 in the H3 tail
and Lysine 12 and Lysine 20 in H4 can be either acetylated or methylated. Acetylation: purple; methylation: blue; phosphorylation: orange;

ubiquitination: green.

replicate late. Euchromatin on the other hand may be
considered as the rest of the genome, which de-con-
denses during interphase, contains most of the genes,
is active or proficient for transcription and replicates
early. In addition, chromatin organisation may change
transiently in local areas of the genome as a response
to cellular stimuli and/or differentiation programs.

The cell has developed mechanisms (below) to modify
in a temporal/spatial manner the chromatin organisa-
tion and to ensure the maintenance of such an organisa-
tion through mitotic and meiotic cell division:

(a) ATP-dependent chromatin remodelling factors
twist and slide nucleosomes, exposing or occluding
local DNA areas to interactions with replication,
DNA repair and transcription factors (reviewed
in [1]).

(b) Post-translational covalent modifications of the
histones within a nucleosome can either facilitate
or hinder the association of DNA repair proteins
and transcription factors with chromatin.

(c) Canonical histones in a nucleosome can be
replaced by histone variants through a DNA-rep-
lication independent deposition mechanism. His-
tone variants harbour distinct information to

respond to DNA damage conditions or to override
an established gene expression stage (reviewed in
(2]).

(d) Methylation at the C-5 position of cytosine resi-
dues present in CpG dinucleotides by DNA meth-
yltrasferases (DNMTs) facilitates static long-term
gene silencing and confers genome stability
through repression of transposons and repetitive
DNA elements. This is achieved through recogni-
tion of methyl-cytosine by specific methyl-DNA
binding proteins that recruit transcriptional
repressor complexes and histone modifying activi-
ties (reviewed in [3]).

The term “‘epigenetic”’ refers to the information
contained in chromatin, other than the actual DNA
sequence, that defines a heritable specific gene expres-
sion pattern. The above mechanisms, often operating
in a coordinated way on a given locus, are responsible
for the complex epigenetic network that controls gene
expression programs in higher eukaryotes. Perturba-
tion of epigenetic balances may lead to alterations in
gene expression, ultimately resulting in cellular trans-
formation and malignant outgrowth. In this review
we will focus on the role of histone post-translational
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modifications in the establishment and preservation of
correct gene expression patterns and how deregulation
and mis-targeting of these histone modifications con-
tributes to the development of malignancies.

2. Histone post-translational modifications and *the
histone code”

A variety of post-translational modifications occur
on the amino terminal tail, as well as on residues located
at exposed sites within the globular domain of the
histones. These post-translational modifications include
phosphorylation, acetylation, ubiquitination, methyla-
tion and SUMOylation (Fig. 1). Such modifications
on histones can create or stabilise binding sites for reg-
ulatory proteins, like transcription factors, proteins in-
volved in chromatin condensation or DNA repair.
Histone modifications may also have the opposite
effect, disrupting or occluding chromatin-binding sites.
Accordingly, there are modifications that co-exist and
work sequentially in a cooperative manner but are
incompatible with others in the same nucleosome. That
is the case for methylation of Lysine 4 H3 (K4 H3), acet-
ylation of Lysine 14 H3 (K14 H3) and phosphorylation
of Serine 10 H3 (S10 H3), all involved in transcription
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activation and incompatible with the generally inhibi-
tory H3 Lysine 9 methylation (Fig. 2, H3).

Furthermore, the role of a particular modification in
transcriptional signalling may also be influenced by the
degree and stability of the modification. Lysine residues
may be modified with one, two, or three methyl groups,
and the “status” of histone methylation determines if
transcription of certain genes is activated or repressed
[4, 5; reviewed in 6].

Distinct histone modifications, on one or more tails,
act sequentially or in combination to form a ‘histone
code” that is read by proteins containing specific inter-
acting domains: bromodomain and chromodomain.
These proteins are the effectors that initiate downstream
biological responses such as chromosome condensation,
DNA repair or transcription activation/repression
(reviewed in [7]). Examples of recruitment of chromo-
and bromo-domain containing proteins, leading to dif-
ferent transcriptional read outs are shown in Fig. 3.
Thus, although the basic composition of the nucleosome
may be the same over long stretches of chromatin, the
specific palette of modifications on nucleosomes creates
local structural and functional diversity delimiting chro-
matin subdomains.

The molecular basis for how the epigenetic informa-
tion carried in histone tail modifications is memorised

Histone modifications cross-talk
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Fig. 2. Interplay between different post-translational modifications. “Compatible’” modifications (those which facilitate other modifications to occur
and/or can co-exist) are represented by green arrows. “Incompatible” modifications (those which negatively affect other modification and/or can not

co-exist) are shown in red.
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Fig. 3. Recruitment of bromo- and chromo-domain containing proteins by histone modifications. (a) Establishment of silent chromatin
(heterochromatin) by lysine 9 H3 methylation: (1) SuV39H1 methylates lysine 9 H3. (2) Methylated Lysine 9 recruits the heterochromatin protein
HP1 in physical association with SuV39H1. (3) Methylation of adjacent nucleosomes by SuV39H1 causes the spreading of the heterochromatin. (b)
Establishment of transcriptionally active chromatin by lysine 4 H3 methylation: (1) Set1p methylates lysine 4 H3. (2) Methylated lysine 4 recruits the
chromatin remodelling factor Chdlp in physical association with histone acetyltransferases. (3) Acetylation of lysine residues prevents repressive
modifications to occur and recruits transcription activators. (c) Establishment of transcriptionally active chromatin by lysine acetylation: (1) GCNS
acetylates several residues within histones H3 and H4. (2) Acetylated lysines recruit the chromatin remodelling complex SWI/SNF. (3) SWI/SNF, via
its ATPase activity, displaces and twists nucleosomes exposing DNA areas for interaction with the transcription machinery.

is unknown. Interestingly, biochemical data have sug-
gested histones H3 and H4 are deposited into nascent
nucleosomes as heterodimers [8]. This opens the possi-
bility that the existing epigenetically coded H3/H4 di-
mers are divided on the two daughter strands, thereby
forming the basis for an epigenetic memory imprint.

3. Histone acetylation and cancer

Acetylation of the e-amino group of lysine residues
occurs on the four histones (Fig. 1). Broadly, acetylation
of histones is linked to transcriptional activation. There-
fore it is not surprising that many of the enzymes
responsible for acetylation of histones at different resi-
dues where first known as transcriptional co-activators
and later as enzymes. Most histone acetyltransferases
take part in huge multiprotein complexes involved in lo-
cus targeting, thus providing chromosomal domain
specificity in addition to the substrate specificity dis-
played by each individual acetyltransferase.

Based on sequence similarity histone acetyl transfer-
ases (HATS) can be organised into families, which seem
to display different mechanisms of histone substrate
binding and catalysis (Table 1).

The Gen5/PCAF family of HAT proteins (GNATS)
function as co-activators for a subset of transcriptional
activators. They contain a HAT domain of around
160 residues and directly C-terminal to the HAT domain
a conserved bromodomain, which has been shown to
recognise and bind acetyl-lysine residues. The wide dis-
tribution of the bromodomain among enzymes that
acetylate, methylate or remodel chromatin highlight
the importance of lysine acetylation in self-maintenance
of a transcriptional active state and recruitment of other
sources of chromatin modifying enzymes (reviewed in
[7D).

The p300/CBP family is another major group of nu-
clear HATs that has been extensively characterised (Ta-
ble 1). The members of this family are more global
regulators of transcription; contain a considerably larger
HAT domain of about 500 residues, and other protein
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Table 1

Human histone acetyl transferases (HATS)

Family Substrate Complex Role

GNAT

PCAF H3/H4, TAT, E1A, p53, PCAF, AR PCAF T. Coactivator
GCN5L H3/H4, TAFs STAGA, TFTC T. Coactivator
ELP3 H3/H4 Elongator T. Elongation
P300/CBP

P300 H2A/H2B/H3/H4, p53, EIA, TAT, AR T. Coactivator
CBP H2A/H2B/H3/H4, TFs, EIA T. Coactivator
MYST

Tip60 H3/H4/H2A, AR TIP60 T. Activation
MOF (MYST1) H3/H4/H2A MAF2 T. Activation
MOZ (MYST3) H3/H4 T. Activation
MORF (MYST4) H3/H4 T. Activation
HBO1 (MYST2) H3/H4 T. Corepressor; DNA replication
Transcription factors

ATF2 H4/H2B T. Activator
TAF1 (TAFII250) H3/H4 TFIIB T. Factor
TFIIC90 (GTF3C4) H3 T. Initiation
Nuclear hormone-related

SRC-1 (NCOAI) H3/H4 NCOA T. Coactivator
ACTR H3/H4 PCAF/P300 T. Coactivator
Others

CIITA (HMC2TA) 114 T. Coactivator
CDYL H4 Protamine — histone
HATI H4/H2A Histone deposition

GNAT: GCN5-related acetyltransferase; PCAF: EP300/CREBP-associated factor; TAT: tyrosine aminotransferase; AR: androgen receptor; TAFs:
TATA box-associated factors; ACTR: activin receptor; CBP: CREB-binding protein; p300: ela-binding protein p300; GCNSL: general control of
amino-acid synthesis 5-like 2; GTF3C4: general transcription factor 3c, polypeptide 4, HBOI: histone acetyltransferase binding to ORC; MYST:
MOZ, YBF2/SAS3, SAS2, TIP60 protein family; MOZ: monocytic leukemia zinc finger protein; MORF: MOZ-related factor; NCOA1/2: nuclear
receptor coactivator 1 and 2; SRC, steroid receptor coactivators; HATI: histone aceayl transferase 1.

domains, including a bromodomain and three cysteine—
histidine rich domains (74Z, PHD and ZZ) that are be-
lieved to mediate protein—protein interaction.

The MYST family of HAT proteins are grouped to-
gether on the basis of their close sequence similarities,
including a particular highly conserved 370 residue
MYST domain, which uses an acetyl-cysteine intermedi-
ate in the acetylation reaction, so the catalytic mecha-
nism involved is different from that shared by the
other families of HATSs (reviewed in [9]). The members
of the MYST family are involved in a wide range of reg-
ulatory functions including transcriptional activation,
transcriptional silencing, dosage compensation and cell
cycle progression (Table 1). Besides the MYST domain,
many members contain a cysteine-rich, zinc-binding
domain within the HAT regions and N-terminal
chromodomains.

As with bromodomains, chromodomains have been
found in many other chromatin regulators, including
remodelling factors and histone methyltransferases. Re-
cently, it has been shown that the chromodomain of
the heterochromatin protein 1 (HP1) and the yeast
CHDI1 protein (Chromo-ATPase/Helicase-DNA bind-
ing domain 1) can respectively recognise methylated
K9 and K4 residues within the histone H3 tail [10-12].
Hence, it is not unreasonable to speculate that some

chromodomain containing HATs might be recruited to
chromatin by histone methylation.

Since the addition of an acetyl group to a lysine res-
idue creates a new surface for protein association, and
many transcription factors and chromatin regulators
bind directly or indirectly acetylated histones, the main-
tenance of a specific histone acetylation pattern is crucial
to cell proliferation. Consequently, it is not surprising
that mutations or chromosomal translocations involving
HAT genes result in development of malignancies (Ta-
ble 4).

Several human histone acetyltransferases have been
found to be involved in translocations where the resul-
tant protein displays a ‘gain-of-function’ by deregulat-
ing HAT activity on histones or targeting lysine
acetylation to new substrates. The p300 and CREB
binding protein (CBP) genes are located on chromo-
somes 16pl13 and 22ql3, respectively, and are found
rearranged in chromosomal translocations associated
with leukaemia or treatment-related myelodysplastic
syndrome. CBP fusion partners are the histone acetyl-
transferases Monocytic Leukaemia Zinc finger protein
(MOZ) and MOZ related factor (MORF) [13]; and
mixed lineage leukaemia (MLL), which encodes a K4
H3 methyltransferase (reviewed in [14]). The MLL gene,
located at 11g23, is fused to the p300 and CBP genes
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giving rise to MLL-p300 and MLL-CBP fusion pro-
teins, in which the bromodomain, HAT domain and
Q region of p300 or CBP are linked to the N-terminal
part of MLL, which contains AT-hooks domains that
can mediate targeting to DNA. The fusion of two
HATs, MOZ and CBP/p300 creates a chimeric protein
consisting of the N-terminal three-quarters of MOZ
(including MYST and zinc finger domains, essential
for HAT activity) fused to the C-terminal 90% of
CBP, containing its HAT domain and a strong trans-
activation region. The resultant protein harbours two
active histone acetyltransferase domains, binding sites
for several transcription activators and the H15 region
of MOZ, which has been proposed to mediate interac-
tion with nucleosomes [9]. Translocations involving
MORF and CBP or p300 are also associated with acute
myeloid leukaemia and with therapy-related myelodys-
plastic syndrome. The resulting fusion proteins are
structurally similar to the MOZ-CBP and MOZ-p300
fusion proteins described above. Albeit all analogies,
developmental defects in MOZ zebrafish mutants sug-
gest that MOZ and MORF are not just redundant
cellular functions [15]. MOZ fusion with another tran-
scription-related protein, TIF2, has also recently been
reported in certain cases of leukaemia (reviewed in
[16]). These translocations also contained an N-terminal
portion of MOZ, fused to the C-terminal part of the nu-
clear receptor co-activator TIF2, including its putative
CBP interaction and activation domains. Recently, it
has been shown that MOZ-TIF2 confers properties of
self-renewal to committed myeloid progenitors in vitro,
with the same domain requirement for both self-renewal
and leukaemic transformation [17]. Finally, MOZ fu-
sion with the steroid receptor co-activator 2, NCOA2,
as a result of the pericentric inversion [8] (pl1ql3),
has been reported in 6 cases of acute monoblastic leu-
kaemia [18]. The high occurrence of HAT proteins
among leukaemic translocations, highlight the impor-
tance of a tight balance of histone acetylation in the exe-
cution of the hematopoietic program. In fact, MOZ
plays a role in HOX regulation in normal cells [15].
Besides translocations, mutations of some HATS are
associated with cancer development. In this sense, his-
tone acetyltransferases act as tumour suppressors. Con-
sistent with this notion, mutations that inactivate alleles
of p300 and CBP cause development of hematological
malignancies in mice [19,20] and mutations in p300/
CBP have been identified in several cases of human leu-
kaemia [21]. Biallelic mutations of the p300 locus have
been identified in human cancers of epithelial origin
[22] and exogenous expression of p300 is able to sup-
press the growth of human carcinoma cells in vitro
[23]. Monoallelic mutation of the CBP locus is the ge-
netic basis for Rubinstein-Taybi syndrome (RTS),
which has been reported to be associated with increased
risk of developing malignant tumours. Several essential

features of RTS are due to haploid insufficiency of the
function of CBP, particularly the HAT [24,25]. Acetyl-
transferase activity targeted to non-histone substrates
such as human or viral oncoproteins also contributes
to the development of malignancies as will be discussed
later.

4. Histone deacetylation and cancer

Histone lysine acetylation is a reversible post-transla-
tional process. The dynamic equilibrium of lysine acety-
lation in vivo is governed by the opposing actions of
acetyltransferases and deacetylases. Deacetylation of
histones by histone deacetylases (HDACsS) results in a
decrease in the space between the nucleosome and the
DNA that is wrapped around it, thus, diminishes acces-
sibility for transcription factors, modifying the chroma-
tin from an open gene active euchromatin structure to a
closed gene silenced heterochromatin structure. Similar
to acetyltransferases, the HDACs are part of large mul-
tiprotein chromatin complexes, but in this case involved
in transcriptional repression.

There are three major families of mammalian
HDAC:s, based on homology to the yeast counterparts
Rpd3, Hdal and Sir2/Hst (Table 2). The class I
HDAUC:s, are nuclear proteins widely expressed in a vari-
ety of tissues. They show a high degree of structural
homology and contain a zinc molecule at the active site
as a critical component of their enzymatic pocket. This
site is the main target for inhibition of deacetylase activ-
ity by most developed anti-cancer drugs. A zinc-active
pocket also characterises the members of the Class II
HDAGCs but, in comparison to class I, they have a
narrower tissue distribution, are much bigger in size,
and shuttle between nucleus and cytoplasm as part of
their mode of action. Two members of this class,
HDAC6 and HDACI1O0 are unique since they harbour
two catalytic domains. The third HDAC family (Class
IIT or SIR-HDAC:S) is quite different, both structurally
and in the catalytic mechanism. Their enzymatic activity
depends on the cofactor NAD™, which breaks down
during the histone deacetylation reaction resulting in
O-acetyl-ADP-ribose and nicotinamide (NAM) (re-
viewed in [26]). Interestingly, NAM inhibits the catalytic
activity of SIR-HDACs whereas it has been proposed
that O-acetyl-ADP-ribose might function in a signalling
pathway that couples SIR-HDACs activity with tran-
scriptional silencing [27].

HDACGC:s are found in vivo as part of multiprotein com-
plexes with clear functions as transcription co-repressors
(Table 2). There is more than one mechanism by which
HDACs may function in cancer development. On one
hand, an abnormal increase in HDAC activity may result
in the transcriptional inactivation of tumour-suppressor
genes like p53. In fact, HDAC4, 8, and 9 are expressed to
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Table 2
Human histone deacetylases (HDACsS)
Family Substrate Complex Role
Class 1
HDACI1 Histones, TP53, E2F1 Sin3, NURD T. Corepressor
HDAC2 Histones, YY1 Sin3, NURD T. Corepressor
HDAC3 H4, RELA NCOR1/NCOR2-GPS2 - TBL1X T. Corepressor
HDACS Histones T. Corepressor
Class 11
HDAC4 Histones NCOR1/NCOR2 T. Corepressor
HDACS Histones T. Corepressor
HDAC6 Histones
HDAC7 Histones Sin3, NCOR2 T. Corepressor
HDACI10 Histones NCOR2 T. Repressor
Class III ( Sir-tuins)
SIRT1 p53 Cell proliferation

SIRT2 Histones, Tubulin

Cell cycle, cell motility

TP53: tumor protein 53, transcription factor; E2F1: E2F transcription factor 1:YY1:Ying-Yang 1, transcription factor; RELA: subunit of NF-«B.

Table 3
Human histone methyl transferases (HMTs)

Family Substrate

Complex

Role

Arginine HMTs
PRMTI1 (HRMTI1L2)
PRMT4 (CARM1)

H4 (Arg3), ILE3, ETOILE, HNRPA2BI
H3 (ArglT, Arg26), TARP, CBP, PABI

PRMTS (SKBI) H2A, H4, SMN
Lysine HMTs

MLLI (ALL-1) H3 (Lys4)
MLL4 (former MLL2)  H3 (Lys4)
hSET1 H3 (Lys4)
SMYD3 H3 (Lys4)
SET7/9 H3 (Lys4)

SET8 (PR-Set7) H4 (Lys20)
DOTIL H3 (Lys79)
SUV39H1/2 H3 (Lys9)
Eu-HMTasel H3 (Lys9)
SETDBI (ESET) H3 (Lys9)

G9a (BATS) H3 (Lys9, Lys27)
EZH2 H3 (Lys9, Lys27)

AR, PCAF, NCOA2, P300, NUMAC

T. Activation
T. Coactivator

Methylosome Celi cycle, snRNP assembly
SET1, MENIN T. Activation, cell proliferation,
Hematopoiesis
SET1, MENIN T. Activation
SET1/ASH2/HCF1 T. Activation
T. Activation, cell proliferation
T. Activation, silencing
Celi cycle, heterochromatin
T. Activation, silencing
E2F1, E2F4 T. Repression, heterochromatin
E2F6 T. Repression
Hetechromatin, silencing
T. Repression, silencing
EDD-EZH2 T. Repression, silencing

ILE3: subunit of NF-AT; ETOILE: HIV Rev activator; HNRPA2BI1: HIV Rev trafficking; TARPP: Thymocyte cyclic AMP-regulated phospho-
protein; CBP: CREB binding protein; PAB1: poly (A)-binding protein; NCOA2: nuclear receptor coactivator 2; NUMAC: nucleosomal methylation

activator complex; SMN: survival motor neuron.

a greater extent in tumour tissues than in normal tissues
[28] and HDAC?2 is overexpressed in tumours from mice
lacking the adenomatosis polyposis coli (APC) tumour
suppressor [29] (Table 5). On the other hand, the tumour
suppressor RB requires the activity of Class I HDACs to
exert its function (reviewed in [30]) and the tumour sup-
pressor pS3 represses the transcription of the DNA-re-
pair helicase protein RECQ4 by a mechanism involving
Class I HDAC activity [31]. Hence, mutations in this
family of deacetylases may contribute to disease. Yet,
the most common outcome of inhibition of HDAC activ-
ity is to trigger differentiation, growth arrest, and/or
apoptosis of tumour cells in vitro and in vivo. These are
the bases for the development of HDAC inhibitors as
anti-cancer drugs (discussed below).

5. Histone methylation and demethylation and cancer

Methylation is another post-translational covalent
modification that occurs on the side-chain nitrogen
atoms of lysine and arginine on histones. The most heav-
ily methylated histone is H3 followed by H4 (Fig. 1).
Arginine can be either mono- or dimethylated, with the
latter in symmetric or asymmetric configurations. Lysine
can accept one, two or three methyl groups, resulting in
mono-, di-, or trimethylated forms. The different stages
of methylation on a given residue, confer different bio-
logical read outs to the modified residue [4,6], thus meth-
ylation has greater combinatorial potential with respect
to other modifications. In contrast to acetylation, which
correlates almost without exception with transcriptional
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Table 4

Histone acetyltransferase mutations in cancer

Gene Mutation/rearrangement Canter type Reference

PCAF Missense mutations Epithelial cancer [137]

P300 Bi-allelic mutations + LOH Gastric carcinoma [138]
Stop codon mutations Colon and breast cancer [22]
Missense mutations Colorectal, gastric and epithelial carcinomas [22,137,140]
MOZ/p300 gene fusion Acute monocytic leukaemia [141-143]
MLL/p300 gene fusion Acute myeloid leukaemia [144]
Homozygous deletion SiHa cervical carcinoma [145]
Point mutations Rubinstein-Taybi syndrome [146]

CBP Stop codon mutations Epithelial cancer [137]
In-frame deletion Epithelial cancer [137]
In-frame deletion Lung cancer [147]
Homozygous deletion Lung cancer [147]
Missense mutations Lung cancer [147]
MYST4/CBP gene fusion Acute myeloid leukaemia [148]
MOZ/CBP gene fusion Acute myeloid leukaemia [142,149-154]
MOZ/CBP gene fusion Acute myelomonocytic Ieukaemia [155]
MORF/CBP gene fusion Myelodysplastic syndrome [156,157]
MORF/CBP gene fusion Acute myeloid leukaemia [158]
Internal tandem duplication+LOH Esophageal carcinoma [159]
Stop codon mutation Colon cancer [130]
MLL/CBP gene fusion Theraphy-related leukaemia [160-163]
Deletions Rubinstein-Taybi syndrome [146,164]
Intragenic duplications Rubinstein-Taybi syndrome [146]
Point mutations Rubinstein-Taybi syndrome [165]

MOZ MOZ/TIF2 gene fusion Acute myeloid leukaemia [142,166-168]
MOZt(2;8)(p23;pl 1) translocation MDS [169]

MORF MORFt(10;17)(q22;q21) translacation Uterine leiomyomata [170]

NCOAL1 PAX3/ NCOAI1 gene fusion Rhabdomyosarcoma [171]

LOH: Loss of heterozygosity.

Table 5

Histone deacetylase changes in cancer

Gene Mutation/rearrangement Cancer type Reference

HDACI Overexpression Mormone refractory prostate cancer [172]

Overexpression Gastric cancer [173]

MDS: myelodysplastic syndrome.

activation, histone methylation can result in either tran-
scription activation or repression, depending on the
modified residue and the palette of other modifications
decorating the histone simultaneously (Fig. 3).

5.1. Histone arginine methylation

Protein arginine methyltransferases (PRMTs) catalyse
the transfer of methyl groups from S-adenosyl-L-methio-
nine (SAM) to the guanidino nitrogens of arginine resi-
dues [32] (Table 3). PRMTs share a conserved catalytic
core, but have little similarity outside the core domain,
that is, the amino- and/or carboxyl-terminal regions,
which likely determine the substrate specificity and the
ability to form oligomers [33].

The type I histone methyltranferases catalyse asym-
metric dimethylation of arginine. This family include

PRMTI and the CARMI (Coactivator-Associated R-
Methyltransferase 1)/PRMT4, which, respectively,
methylate histone H4 Arginine 3 and histone H3 Argi-
nine 2, Arginine 17 and Arginine 26 [34,35]. Other less
characterised members of this family are PRMT2 and
PRMT?3, both homologues of PRMT1 and contain
SH3 domain and C2H?2 zinc-finger motifs respectively,
which may determine its substrate specificity [36,37].
The type I PRMTs catalyse the formation of sym-
metric dimethylarginine. This group include PRMT5/
JBP1 [38] and the novel PRMT7 [39]. PRMTS associates
in vivo with the ATPase-chromatin remodelling hSWI/
SNF complex, and display substrate specificity for Argi-
nine 8 (R8) H3 and R3 H4 as preferred sites of methyl-
ation. PRMT?7 contains two binding sites for the donor
S-adenosyl-L-methionine (SAM) and exhibit histone
methyltransferase activity against H4 [40].
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Histone arginine methylation correlates with tran-
scription activation of a variety of genes. Several labora-
tories have shown functional synergy between arginine
methylation and histone acetylation in transcription acti-
vation events [41-43]. In fact, the arginine methyltransfe-
rases CARM1/PRMT4 and PRMT1 physically associate
with histone acetyltransferases to form co-activator com-
plexes, which, acting in a cooperative manner, mediate
the function of the transcription factor Nuclear factor
kB (NF-kB) and the tumour suppressor p53 [44,45]. In
contrast, PRMTS5 has been identified in promoter com-
plexes where it has been proposed to function as a tran-
scriptional repressor by methylating histones [46,47].

Work from several laboratories argues for the impor-
tance of the arginine methyltransferases in the regulation
of cell growth and proliferation: CARMI is overexpres-
sed in androgen-dependent and independent prostate
carcinomas [48]. Overexpression of PRMTS causes a
reduction in the expression of the tumour suppressors
ST7 and NM23 correlating with increased R8 H3 meth-
ylation and increased transformation properties of
human cells [49]. Finally, the tumour suppressor DAL-
1 (differentially expressed in adenocarcinoma of the
lung)/4.1B, whose expression is lost in primary non-
small-cell lung carcinomas, physically interacts with
PRMT?3 inhibiting the methyltransferase activity against
its cellular substrates [50]. Thus, arginine methylation
seems to be an important mechanism to regulate expres-
sion/function of genes involved in tumour suppression.

5.2. Histone lysine methylation

Lysine methylation occurs in several residues on his-
tones H3 and H4. Some of these residues are also
substrates for acetylation (Fig. 1). With almost no
exception, the enzymes that catalyse the methylation
of lysine residues of histones share strong homology in
a 140 aminoacid catalytic domain known as the SET
domain (standing for Su(var), Enhancer of Zeste and
Trithorax) (Table 3). Lysine methylation is extremely
diverse in its consequences as it can promote transcrip-
tion activation, mediate transcriptional repression, trig-
ger heterochromatin formation and even chromosome
loss.

Methylation of K4 on histone H3 correlates with
euchromatic areas proficient for transcription and tri-
methylation of K4 H3 specifically accumulates upon
activation of transcription [4,5,51]. Methylated K4 cre-
ates a binding site for the chromodomain containing
protein Chdlp, which recruits acetyltransferase activity
to activate transcription [12]. K4 methylation also re-
cruits chromatin-remodelling activity that contributes
to the nucleosome changes necessary during transcrip-
tion activation [52].

There are several human Lysine 4 H3 methyltransfe-
rases, which display homology to the yeast Setl protein

beyond the catalytic SET domain (Table 3). The enzy-
matic activity and possibly the substrate specificity of
the “Setl family” of enzymes depend on their assembly
into a multiprotein complex, which is also evolutionarily
conserved [53]. Some of the lysine 4 H3 methyltransfe-
rases are only proficient in catalysis of monomethylation
(for example Set7/9) whereas others can catalyse up to
tri-methylation (MLL1) due to the presence of specific
residues in the catalytic domain.

Similarly to K4, methylation of K36 and K79 on his-
tone H3 also “marks” euchromatic areas and correlates
with transcription activation [54,55]. There are several
human homologues of the yeast K36 methyltransferase
Set2 protein (NDS1, NSD2/MMSET, WHSCI1, NSD3,
ASHI1, HIF1) however, no catalytic activity has been re-
ported so far for any of them. Still, all members are
linked to transcription regulation and several of them
are involved in human disease [56]. K79 methylation is
catalysed by an evolutionary conserved protein called
DOTT1 [57]. This enzyme has a catalytic domain with a
unique organisation that resembles more an arginine
methyltransferase than a lysine methyltransferase. The
fact that the substrate, K79, lies well inside the globular
domain of the histone H3, whereas all other methylated
lysines are in the exposed amino-terminal tail, may ac-
count for the structural peculiarities of these enzymes
[58].

Methylation of Lysine 20 on histone H4 is catalysed
by SET8 (Pr-Set7). This modification occurs at the onset
of mitosis and is involved in chromatin condensation,
necessary to ensure proper chromosome segregation
[59]. The chromatin-associated factor HCF1 (herpes
simplex virus Host-Cell Factor 1) regulates the cell cycle
changes in K20 H4 methylation, inhibiting a PR-Set7-
dependent switch during mitosis from monomethyl to
dimethyl K20 H4 and preventing in this way defective
mitotic chromosome behavior [60]. In contrast to hu-
mans, K20 H4 methylation in yeast does not have any
impact in chromosome condensation and transcription
but serves as a DNA damage signal to recruit check-
point proteins to damaged DNA (discussed below).

Methylation of K9 on H3 (mainly tri-methylation)
triggers formation of constitutive heterochromatin by
serving as a mark to recruit the heterochromatin for-
mation protein (HP1). K9 mono- and di-methyl forms
are involved in retinoblastoma mediated transcrip-
tional repression of euchromatic genes [61] and in
establishment of facultative heterochromatin in the
mammalian inactivated X chromosome [62-64]. Meth-
ylation of K27 on histone H3 is also a signal for tran-
scription repression and maintenance of stable
epigenetic silencing via recruitment of the Polycomb
Repressive Complex (PRC1) [65-68]. Although K9
and K27 methylation might appear as redundant cel-
lular functions, recent work demonstrates that both
modifications exhibit distinct distributions at different
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loci and overlapping but distinct patterns of Polycomb
recruitment [69].

Methylation of K9 H3 is catalysed by the “SuV39
family” of histone methyltransferases, which include
the proteins Suv39hl, Suv39h2, G9a, ESET/SETDBI
and EuHMTasel. Although they have common sub-
strate specificity, the catalytic activity of these enzymes
differs: Suv39h1/Suv39h2 are tri-methylases whereas
ESET/SETDBI is a di-methylase, only proficient for
tri-methylation in association with mouse ATFa-associ-
ated modulator (mAM) [70,71]. The G9a HMT is
responsible for the vast majority of K9 H3 dimethyla-
tion and most monomethylation in mouse embryonic
stem cells [72]. Methylation of K27 from histone H3
[73] is also catalysed by G9a, while similarly, EZH?2,
the catalytically active component of the Polycomb
Repressive Complex 2 (PRC2), is capable of methylating
K9 and K27 of histone H3 [65,66]. Surprisingly, EZH2
is structurally more similar to the K4 methyltransferases
than to the SuV39 family.

In agreement with the biological functions of K4 and
K27 methylation, their corresponding enzymes belong
to the Trithorax Group (TrxG) and Polycomb Group
(PcG) of proteins, positive and negative regulators of
transcription respectively. A strict equilibrium between
PcG and TrxG function is essential for the maintenance
of heritable transcription patterns of the homeotic (Hox)
genes during development, hematopoiesis, X-chromo-
some inactivation and control of cell proliferation (re-
viewed in [74]). Thus, it is not surprising that several
lysine methyltransferases are closely related to human
cancer (Table 6).

EZH2 is highly expressed in metastatic prostate can-
cer, lymphomas and breast cancer [75,76]. EZH2 tran-
scription is tightly regulated by the RB/E2F pathway
and ectopic expression of EZH2 is capable of providing
a proliferative advantage to primary cells. Thus, EZH2
is a bona fide oncogene [77].

Chromosomal rearrangements involving MLL1 oc-
cur in more than 80% of cases of infant acute leukaemia
and therapy-related leukaemia (reviewed in [78]). Most
of these reorganisations involve the amino terminal part
of MLLI, excluding the catalytic SET domain, fused to
about 60 different partners. Thus, the classic model to
explain the role of MLLI1 in leukaemia was a gain of
function for the fusion oncogenic protein that would
target transcription activation or repressor activity to
new substrates via the DNA interacting motif of
MLLI (reviewed in [79]). However, it is conceivable that
alternative mechanisms might contribute to malignancy
since this protein contains multiple functional domains
(AT-hooks, PHD-fingers, transactivation domain and
SET domain). In fact, dimerisation of MLL1 has been
reported as a new mechanism for MLL1-dependent
transformation [80]. Furthermore, recent work from
several laboratories suggests a possible role for the enzy-

matic K4 H3 methyltransferase activity of MLL1 and
other members of the “Setl family” in tumourigenesis:
(a) The MLL4 (former MLL2) complex binds to the tu-
mour suppressor protein MENIN (Multiple Endocrine
Neoplasia type I gene). This interaction is lost in tu-
mour-derived cells, pointing to K4 methylation as the
regulatory mechanism involved in the MENIN tumour
suppressor function [53]. Moreover, MLL4 is amplified
in epithelial cancers such as glioblastoma and pancreatic
cancer [81]; (b) MLLI is also found in physical associa-
tion with MENIN [82]. Cooperative interaction between
MENIN and MLLI1 plays a central role in MENIN
activity as a tumour suppressor since loss of function
of either MLL or MENIN results in down-regulation
of p27Kipl and pl8Inkdc expression and deregulated
cell growth [83]; (c) SMYD3 is overexpressed in the
majority of colorectal and hepatocellular carcinomas.
Overexpression of the SMYD3 K4 H3 methyltransfer-
ase activity enhances cell proliferation [84]; and (d)
HALR (MLL3) maps to chromosome 7q36, which is
associated with leukaemia and developmental defects
[85]. Thus, overexpression, mis-targeting and/or deregu-
lation of K4 H3 methyltransferase activity might result
in aberrant regulation of gene expression and cellular
transformation.

5.3. Histone demethylation

Until very recently, the dogma was that methylation
is an irreversible process. This conclusion was raised
from the observation that the half-life of histones and
methyl-lysine residues within them are the same (re-
viewed in [86]). In contrast to acetylation or phosphor-
ylation, which have fast turn over and fit the expected
features of a regulatory modification, methylation was
favoured as a permanent mark and therefore associated
more with defining chromosomal sub-domains (euchro-
matin versus heterochromatin) rather that specific tran-
scriptional stages. However, this model could not
account for the changes in H3 K4 and R17 methyla-
tion observed upon activation of transcription [4,87]
or changes in K9 H3 methylation occurring upon
repression of transcription within euchromatic areas
[61].

The last half-year has witnessed the identification of
the first arginine and lysine demethylases. As proposed
by Kouzarides and co-workers, the removal of a methyl
group from histones seems to be achieved in diverse
ways (reviewed in [86]). Methylated arginines can be
erased from histones by a deimination reaction that re-
sults in the conversion of arginine into citrulline. This
process affects methylated and non-methylated argi-
nines, thus, it is not properly an “arginine de-methyla-
tion event”, although it is certainly responsible for the
turn over of this modification. Deimination of arginines
on histone H3 and H4 is catalysed by PADI4 [88,89]. In
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Table 6
Histone methyltransferase mutations in cancer
Gene Mutation/rearrangement Cancer type Reference
MLLI/ALL1 MLL-PTD Acute myelogenous leukaemia [174-183]
MLL-PNTD Acute lymphoblastic leukaemia [184]
MLL gene amplification Acute myelogenous leukaemia [185-196]
MLL gene amplification MDS [185,186,191,195,197]
MLL gene amplification RAEB [198]
MLL gene amplification Acute lymphoblastic leukaemia [199]
Trisomy 11 Acute myelogenous leukaemia [176,200,201]
Trisomy 11 + translocation MSD + myelomonocytic leukaemia [155]
Trisomy 11 + PTD Acute monocytic leukaemia [161]
Trisomy 11 + PTD MDS [202]
Multiple rearrangements Acute Leukaemia + MDS [203-207]
Multiple rearrangements Erythroid leukaemia [208]
MLL/AF17 gene fusion Acute myelocytic leukemia [209-212]
MLL/LASPI gene fusion Acute myelocytic leukemia [213]
MLL/LAF4 gene fusion Acute lymphoblastic leukaemia [214]
MLL/AF10 gene fusion Acute myeloid leukaemia [215,216]
MLL/AFIO gene fusion Acute lymphoblastic leukaemia [217]
MLL/AF10 gene fusion Acute monocytic leukaemia [218]
MLL/SEPTING gene fusion Acute myeloid leukaemia [219,220]
MLL/FBP17 gene fusion Acute myeloid leukaemia [221]
MLL/Gephryn gene fusion Acute monoblastic leukaemia [222]
MLL/AF15ql4 gene fusion Acute myeloid leukaemia [223]
MLL/AF9 gene fusion Acute myeloid leukaemia [224-228]
MLL/AF9 gene fusion Acute lymphoblastic leukaemia [229]
MLL/CIP29 gene fusion Acute myelomonocytic leukaemia [230]
MLL/RASGAP gene fusion Acute myeloid leukaemia [231]
MLL/AF-Ip gene fusion Acute lymphoblastic leukaemia [232]
MLL/AF5Q31 gene fusion Acute lymphoblastic leukaemia [211,233]
MLL/AF4 gene fusion Burkitt-like lymphoma [234]
MLL/AF4 gene fusion Acute lymphoblastic leukaemia [235-243]
MLL/ENL gene fusion Acute lymphoblastic leukaemia [244-246]
MLL/ELL gene fusion Acute myelomonocitic leukaemia [247]
MLL/ELL gene fusion Acute myeloid leukaemia [244]
MLL/EEN gene fusion Acute myeloid leukaemia [248]
MLL/GRAF gene fusion Acute monocytic leukaemia [249]
MLL/LPP gene fusion Acute myeloid leukaemia [250]
MLL/TETI1 gene fusion Acute myeloid leukaemia [251]
MLL/LCX gene fusion Acute myeloid leukaemia [220]
MLL/AF6 gene fusion Chronic eosinophilic leukemia [252,253]
MLL/AF3p21 Acute monocytic leukaemia [254,255]
MLL/NUP98 gene fusion Acute myelocytic leukemia [256]
MLL/GAS7 gene fusion Acute myeliod leukaemia [257]
MLL/AFX gene fusion Acute leukaemia [258]
MLL/ACACA gene fusion Acute leukaemia [259]
MLL/SELB gene fusion Acute leukaemia [259]
MLL/SMAPI gene fusion Acute leukaemia [259]
MLL/TIRAP gene fusion Acute leukaemia [259]
MLL2 19q13.1 amplification Solid tumors [81]
MLL3(HALR) 7q36 Deletion Acute myeloid leukaemia [260]
SMYD3 Overexpression Colorectal/hepatocellular carcinomas [84]
EZH2 EZH?2 amplification Primary breast tumor [77]
Aberrant expression Hodgkin’s lymphoma [261,262]
Overexpression Breast carcinoma [76,263]
Overexpression Prostate cancer [75]

PTD: partial tandem duplication; PNTD: partial non-tandem duplication; MDS: myelodysplastic syndrome; RAEB: refractory anaemia with excess

of blasts.

vivo, the estrogen-regulated pS2 promoter undergoes
deimination of H3 when the gene is downregulated, thus
exhibiting opposing features to PRMT1 and CARMI1

arginine methylation. Since replacement of arginine
by citrulline avoids further methylation of this resi-
due, re-setting has to take place either by the action of
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aminotransferase enzymes that can convert citrulline
back into arginine or replication dependent new histone
deposition.

Histone lysine methylation can be reverted by an ami-
no-oxidase reaction, which produces an unmethylated
lysine. The first identified lysine demethylase, LSDI
(KIAAO0601), is a FAD-dependent amine oxidase with
substrate specificity for methylated K4 on histone H3
[90]. LSD1 is found in association with several transcrip-
tional repressor complexes [91,92] and RNAi knock-
down of LSDI results in an increase K4 methylation
and concomitant derepression of the target genes [90].
Surprisingly, LSDI1 is also part of the transcription acti-
vation complex that contains the Lysine 4 H3 methyl-
transferase MLL1 [ALL-1] [93]. The presence of
MLL1 and LSD1 in the same protein complex, suggests
that a very fine balance between methylated and unme-
thylated Lysine 4 H3 is crucial for the control of target
promoters.

The arginine and lysine de-methylases identified so
far revert only specific methylation statuses: PADI4 acts
only on unmethylated or monomethyl-arginine, while
LSDI1 can demethylate only di-methyl lysine. Hence,
the discovery of demethylases does not conflict with
the finding that certain methyl-statuses remain on pro-
moters after transcriptional changes have been operated
[94,95].

6. Other modifications

Phosphorylation is another covalent post-transla-
tional modification of histones. The main substrate for
phosphorylation is histone H3. The amino terminal tail
Serine 10 (S10) of H3 can be phosphorylated with com-
pletely opposite effects: S10 phosphorylation is neces-
sary to initiate chromosome condensation in the
pericentric heterochromatin, by recruiting condensin,
and subsequent spreading throughout the genome dur-
ing the G2-M phase transition in mitosis and meiosis
(reviewed in [96]). Conversely, phosphorylation of S10
H3 has an important role in the transcriptional activa-
tion of eukaryotic genes by promoting acetylation of
K14 on the same histone tail ([97]; reviewed in [96]).
Mitosis-specific phosphorylation of histone H3 also oc-
curs on S28 and Threonine 11 (T11) at the onset of chro-
mosome condensation, suggesting that combination of
mitotic phosphorylation at S10, S28 and T11 may have
a different read out than the individual S10 phosphory-
lation coupled to transcriptional activation. Members of
the aurora AIR2-Ipll kinase family catalyse histone H3
phosphorylation at S10 during mitosis in several organ-
isms. Their activity is counterbalanced by typel phos-
phatases (PP1) in a cell cycle regulated manner.
Recently, it has been shown that the histone variant
H2AX is phosphorylated at S139 by a member of the

phosphatidylinositol 3-kinase-like kinase (PI3KK) fam-
ily. This modification facilitates post-replication DNA
repair by recruiting cohesin, a protein complex that
holds sister chromatids together [98].

The g-amino group of histone lysine residues are also
subject to modification by ubiquitin and ubiquitin-like
proteins such as SUMO (Fig. 1). Due to the large size
of these modifications, it is not clear whether SUMOyla-
tion and ubiquitination directly affects nucleosomal
structure or packing or whether this modification serves
to promote/inhibit interaction with non-histone pro-
teins, or both (reviewed in [99]). Histone ubiquitination
is generally associated with increased gene expression.
Actually, monoubiquitination of histone H2B in yeast
is required for methylation of histone H3 at K4 and
K79, two activating modifications [5,100-102]. The
mechanism by which ubiquitination promotes methyla-
tion seem to involve recruitment of proteosomal ATP-
ases by ubiquitin-modified H2B [103]. In contrast,
modification of transcription factors and histones by
SUMO is generally associated with decreased gene
expression by improving the association of the sub-
strates with HDACI1 and HP1, two transcriptional core-
pressors. Both SUMOylation and ubiquitination are
reversible, and dynamic cycles of conjugation/deconju-
gation seem to be essential for the proper regulatory
activity of these modifications [104,105].

7. Other substrates

In addition to catalysing histone acetylation, a num-
ber of HAT proteins, including CBP/p300 and PCAF,
have been shown to acetylate a myriad of transcrip-
tion-related proteins. These include DNA-binding tran-
scription factors such as p53, ELKF, HMGI(Y), TCF,
NF-kB, MyoD, GATAI1, E2F1, HNF4, where acetyla-
tion has been shown to enhance the DNA-binding affin-
ity of the affected protein; transcriptional co-regulators,
like ATCR, b-Catenin, c-Myc and RB; and also general
transcription factors, for instance TFIIE, TFIIF and
TFIIB, which are known to be acetylated although the
biological significance remains unclear.

Acetyltransferase activity targeted to non-histone
substrates such as human or viral oncoproteins also con-
tributes to the development of malignancies: the adeno-
virus E1A mediates its effects on cellular transformation
by interacting with cell growth regulatory factors. E1A
can be acetylated by CBP/p300 and by PCAF. Acetyla-
tion of E1A disrupts the association of E1A with tran-
scription  repressor complexes thus, promoting
aberrant gene activation [106]. The c-MYC oncoprotein
is a substrate of the acetyltransferases hGCN5/PCAF
and TIP60. Acetylation of ¢-MYC by either mGCN5/
PCAF or TIP60 results in a dramatic increase in protein
stability. The data reported here suggest a conserved
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mechanism by which acetyltransferases regulate c-MYC
function by altering its rate of degradation [107].

SUMOylation and ubiquitination may affect tran-
scription by modification of non-histone proteins includ-
ing histone deacetylases (HDACI), tumour suppressors
(PML, p53) and transcription factors (c-myc and gluco-
corticoid receptor GR) (reviewed in [99]). Aberrant
SUMOpylation/ubiquitination results in defects in sub-
cellular localisation and alters the degradation rate of
factors important in regulating cell proliferation and dif-
ferentiation. In this line, the PML-RAR fusion protein
expressed in acute promyelocytic leukaemia, is not
SUMO modified whereas arsenic trioxide, an effective
treatment for this disorder, restores SUMOylation of
the fusion protein [108].

Lysine methylation has emerged as a novel mecha-
nism to regulate tumour suppressor p53. Methylation
of one residue within the carboxyl-terminus regulatory
region of p33 is catalysed by methyltransferase SET9/7
to stabilise the half-life of the protein and maintaining
it restricted to the nucleus [109].

8. Working as a team: interplay between histone
modification, DNA methylation, ATP-chromatin
remodelling and small double-stranded RNA silencing

8.1. Cross-talk between histone modifications

The nature of the histone code predicts that histone
modifications impinge on each other by acting as
molecular switches, enabling or blocking the setting
of other covalent marks (reviewed in [110]). It also
predicts a chronology in the establishment of a specific
modification pattern. Both assumptions seem to be
true. It is known that in gene activation, phosphoryla-
tion of histone S10 H3 facilitates acetylation of K14
and methylation of K4, resulting in an open chroma-
tin conformation [97,111]. S10 phosphorylation also
facilitates acetylation of K9, thereby preventing the
setting of repressive Lys 9 methylation marks [112].
Also on histone H3, K4 methylation facilitates acety-
lation by creating a specific binding site for the
chromodomain containing protein Chdl, component
of SAGA and SLIK HATs complexes [12]. Regarding
timing, upon estrogen stimulation, H3 is acetylated
initially at K18, then at K23, and finally methylated
at R17 [43]. Also, ordered cooperative modification
of histones seems to be essential for transcriptional
activation by the tumour suppressor p53. In particu-
lar, methylation of R3 H4 by PRMTI1 is followed
by p300 acetylation of H4, which precedes the accu-
mulation of CARMI1 and consequent R17 H3 methyl-
ation [45].

The cross-talk can take place even between modifica-
tions on different histones. For example, ubiquitination

of histone H2B K123 is required for an efficient methyl-
ation of K4 H3 and K79 H3, both involved in transcrip-
tional activation [100-102].

8.2. Cross-talk with DNA methylation

DNA methylation is the most studied epigenetic
mechanism. While the vast majority of the genome is
unmethylated, promoters of certain number of genes
undergo DNA methylation of CpG islands. This mod-
ification brings about an inheritable chromatin state of
transcriptional repression. DNA methylation affects
histone modifications and vice versa. Data in different
systems suggest a range of models with respect to the
temporal order in which this two epigenetic events oc-
cur and their impact on the process of transcription
(reviewed in [113]). Methyl-CpG enriched regions tar-
get methyl-CpG-binding proteins, which in turn recruit
repressor complexes containing histone deacetylases
[114] as well as histone methyltransferases [115]. Thus,
DNA methylation seems to precede histone modifica-
tion in the establishment of heterochromatin. However,
there are data supporting DNA methylation as a sec-
ondary event, induced by an already silenced chroma-
tin. Studies on the kinetics of silencing of transgenes
show that loss of histone acetylation and H3 Lys 4
methylation are the first steps in the sequence of
events, leading to reversible transcriptional repression;
methylation of K9 H3 and methylation of CpG sites
on promoter DNA are later events that ‘lock’ the re-
pressed gene in a stable silenced chromatin state
[116]. Similarly, it has been shown in fungi that trime-
thylated K9 H3 marks chromatin regions for cytosine
methylation [117-119].

The order of events leading to heterochromatin for-
mation may differ from organism to organism and from
gene to gene. In any case, the proper epigenetic control
of gene expression requires the cooperation of DNA
methylation and histone modifications, and disruption
of either of those processes leads to aberrant gene
expression seen in almost all human cancers.

8.3. Cross-talk with ATP-dependent chromatin
remodelling

ATP-dependent nucleosome remodelling has been
linked to histone modification either as a pre-requisite
to facilitate accessibility of the modifying enzymes or
as the read out of a certain modification.

Histone acetylation/deacetylation activities are cou-
pled to ATPase chromatin remodelling: the human
nucleosome remodelling activities CHD3 and CHDA4
(chromo-ATPase/helicase-DNA binding domain 3 and
4) are components of the transcription repressor com-
plex NRD [120], whereas the chromatin remodelling
protein Chdl (chromo-ATPase/helicase-DNA binding
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domain 1) is a component of the SAGA and SLIK his-
tone acetyltransferase complexes.

The K4 H3 methyltransferase MLL1 [ALL-1] physi-
cally interacts with the chromatin remodelling factor
hSNF5/INII [121], which is a tumour suppressor. Fur-
thermore, K4 H3 methylation serves as a mark to recruit
ISWI to chromatin to activate transcription [122].

Finally, the chromatin remodelling complexes are in
charge of the histone deposition that occur independent
of DNA replication, which might set up the bases for the
epigenetic inheritance of the histone modification pat-
terns (reviewed in [123]).

8.4. Small double-stranded RNAs

There are two main RNA-guided epigenetic mecha-
nisms: RNA-directed DNA methylation (RdDM),
which results in covalent modification of cytosines in
the DNA, and RNAi-mediated heterochromatin forma-
tion, which targets histone methylation (typically meth-
ylation of lysine 9 of histone H3) to centromeric areas.

The small RNAs, 21-26 nucleotides (nt) in length,
produced by the RNaselll enzyme Dicer, can direct epi-
genetic alterations, such as gene silencing and hetero-
chromatin formation, by incorporating themselves into
silencing-effector complexes and guide them to comple-
mentary homologous DNA sequences (reviewed in
[124]). Although, so far most of the data regarding
RNA-mediated epigenetic pathways come from insect,
plants and fungi, increasing evidence supports the exis-
tence of such mechanisms in vertebrates. Mammals have
counterparts of the RADM enzymatic machinery and de
novo methylation of cytosines outside of the CG dinucle-
otide context, which is the result of RADM [125], has
been reported in mammals [126]. The a-satellite repeti-
tive array, present in all human centromeric regions pro-
duces transcripts, which are processed by Dicer [127].
Remarkably, in dicer-deficient chicken cells heteroch-
omatic proteins (Cohesin and HP1) delocalise, indicat-
ing a disruption of heterochromatin targeting by the
RNAIi machinery.

The discovery of RNAi-mediated nuclear processes
has increased the complexity of the epigenetic network:
RNAi-mediated chromatin modifications are important
to determine patterns of gene expression and chromo-
some behavior. Thus, the RNAi enzymatic machinery
has the potential to contribute to diseases such as cancer
and chromosomal disorders.

9. The histone code for DNA damage

As we have discussed, post-translational histone
modifications set up a “code’ that can be read by cellu-
lar factors bringing about specific responses. Although
this review focuses on the regulation of gene expression,

the histone code also transmits information to sense and
respond to DNA damage [128]. Generation of double-
strand breaks represents an important source of translo-
cations and other gross chromosomal alterations fre-
quently seen in cancer cells.

Phosphorylation of the histone variant H2AX (Serine
126) occurs extremely fast and propagates over
~100 Kb around a single double-strand break site.
Phosphorylated H2A (y-H2AX) contributes to repair
by recruiting the sister chromatid cohesion factor, cohe-
sin, which is important for efficient post-replicative dou-
ble-strand break repair [98]. Recently, lysine
methylation has been identified as a novel damage-spe-
cific histone mark: methylated K79 H3 contributes to
DNA repair by targeting 53BP1 to DNA double-strand
breaks [129] and methylation of K20 H4 controls
recruitment of Crb2 to sites of DNA damage in yeast
[130]. Hence, specific histone modifications seem to
accumulate in “foci” at the damaged DNA sequences
facilitating the recruitment of a subset of damage re-
sponse proteins and contributing in this way to genome
integrity.

10. Therapeutics and future perspectives

In contrast to genetic events, the possibility of
reversing epigenetic codes may provide new targets
for therapeutic intervention. DNA methylation is
tightly connected to cancer development in two possi-
ble ways: on one hand, oncogenesis may result from
hypermethylation of tumour-suppressor genes, whereas
global genomic hypomethylation could enhance onco-
gene expression and genomic stability (reviewed in
[131])). Genomic hypomethylation may also cause
genomic instability since demethylation predisposes
DNA to strand breakage and recombination within
derepressed repetitive sequences (reviewed in [132]).
Drugs that inhibit DMTSs activity, such as procaine
and zebularine, are on clinical trials as anti-cancer
therapy (reviewed in [133]). Furthermore, the use of
S-azacytidine has already been approved by the US
Food and Drug Administration for the treatment of
myelodysplastic syndromes. Certainly, targeting epige-
netic marks to control the progression of cancer is no
longer science fiction.

Several cancer associated mutations and chromo-
somal translocations result in repression of transcription
through abnormal recruitment or overexpression of
HDAG:s. This is the rationale for the development of
HDAC inhibitors as a new class of anti-cancer therapy.
Currently, HDACs are molecular targets for the devel-
opment of enzymatic inhibitors to treat human cancer,
and six structurally distinct drug classes have been iden-
tified with in vivo bioavailability and intracellular capa-
bility to inhibit many of the known mammalian HDACs
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(reviewed in [134]). Initial clinical trials indicate that
HDAC inhibitors from several different structural clas-
ses are very well tolerated and exhibit clinical activity
against a variety of human malignancies. Although the
molecular basis for their anticancer selectivity remains
obscure to date, the fact is that HDAC inhibitors have
the potential to modulate additively or synergistically
the activity of other therapeutic agents. Thus HDAC
inhibitors, in combination with chemical drugs or radio-
therapy, can reduce uncontrolled cell proliferation and
apoptosis (reviewed in [134]).

Although treatment with DMTs and HDAC inhibi-
tors results in overall positive effects in control of cell
proliferation, they are not 100% selective as they often
target all members of a family of enzymes rather than
an individual one. In the past decade, the targeting
and inhibition of specific mRNAs by RNA molecules
has become the big challenge to achieve maximum spec-
ificity in anti-proliferative therapy (reviewed in [135]).
Double stranded RNA (dsRNA) and small inhibitory
RNA (siRNA), can selectively and efficiently inhibit
expression of specific oncogenes, expressed in cancer
cells but not in normal cells. Shutting down the expres-
sion of cancer-promoting genes by siRNA has proven to
be an effective approach against several cancer models.
Cells infected with viruses express long dsRNA that
can trigger the induction of the anti-proliferative cyto-
kines and interferons, thereby preventing spread of the
virus. Taking advantage of this antiviral response, the
dsRNA killing strategy (DKS), based on the in situ gen-
eration of dsSRNA that can induce those antiviral de-
fenses specifically in cancer cells, has been developed
recently. DKS has the potential to be applicable to a
wide range of tumours, emerging as a powerful tool
for cancer treatment (reviewed in [135]).

The increasing evidence for a direct link between his-
tone methyltransferases and cancer, together with the
discovery of demethylases bring to focus these families
of enzymes as putative targets for cancer therapy.
SMYD3 is clearly involved in the development of colo-
rectal and hepatocellular carcinomas, thus, it is an excel-
lent therapeutic target [84]. SMYD3 is particularly
attractive since it contains enzymatic activity and binds
to a specific sequence of DNA. MLLI and MLL4 are
found in acute myelogenous leukaemia/myelodisplastic
syndromes and solid tumours, respectively [78,79,81].
Future research needs to be done to firmly prove a role
of overexpression of the enzymatic activity in develop-
ment of malignancy as the first step for drug targeting.
The identification and characterisation of novel histone
demethylases is of great importance, in analogy to
HDAC inhibitors therapy. Since some histone lysine
methylations are marks for DNA damage, inhibitors
of histone lysine demethylases could be useful in the
control of genome reorganisations due to defects in
DNA double-strand breaks.

In most cancers, the molecular network associated
with malignancies is extremely complex, hence it is often
necessary to target more than one gene. Combined ther-
apies seem to achieve stronger and more selective re-
sponses, however, little is known about the interplay
of different epigenetic mechanisms and the consequences
in the global system of targeting one specific pathway. It
is our challenge to understand the cross-talk of different
epigenetic mechanisms in order to design, in the most ra-
tional way, new anti-cancer drugs. The recent descrip-
tion of loss of acetylation at K16 and trimethylation
at K20 as a common hallmark of human cancer [136]
raises the prospect of using cancer-specific histone mod-
ification ‘signatures’ for diagnosis and for targeted
therapy.
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